ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Call number: ZSP-403-169
    In: Jare Data Reports
    Type of Medium: Series available for loan
    Pages: 212 S. : graph. Darst.
    Series Statement: Jare Data Reports 169 : Upper Atmosphere Physics 8
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-04-07
    Description: Based on assumptions that substorm field line dipolarization at geosynchronous altitudes is associated with the arrival of high-velocity magnetotail flow bursts referred to as bursty bulk flows, the following sequence of field line dipolarization is proposed: (1) slow magnetoacoustic wave excited through ballooning instability by enhanced inflows in pre-onset intervals towards the equatorial plane; (2) in the equatorial plane, slow magnetoacoustic wave stretching of the flux tube in dawn–dusk directions resulting in spreading plasmas in dawn–dusk directions and reduction in the radial pressure gradient in the flux tube. As a consequence of these processes, the flux tube assumes a new equilibrium geometry in which the curvature radius of new field lines increased in the meridian plane, suggesting an onset of field line dipolarization. The dipolarization processes associated with changing the curvature radius preceded classical dipolarization caused by a reduction of cross-tail currents and pileup of the magnetic fields. Increasing the curvature radius induced a convection surge in the equatorial plane as well as inductive westward electric fields of the order of millivolts per meter (mV m−1). Electric fields transmitted to the ionosphere produce an electromotive force in the E layer for generating a field-aligned current system of Bostrom type. This is also equivalent to the creation of an incomplete Cowling channel in the ionospheric E layer by the convection surge.
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-05
    Description: Transient westward electric fields from the magnetosphere generate equatorward plasma drifts of the order of kilometers per second in the auroral ionosphere. This flow channel extends in north–south directions and is produced in the initial pulse of Pi2 pulsations associated with the field line dipolarization. Drifts in the ionosphere of the order of kilometers per second that accumulated plasmas at the low-latitude end of the flow channel are of such large degree that possible vertical transport effects (including precipitation) along the field lines may be ignored. In this condition, we suggest that plasma compression in the ionosphere initiated the dynamic ionosphere. The dynamic ionosphere includes a nonlinear evolution of the compressed ionospheric plasmas, generation of field-aligned currents to satisfy the quasi-neutrality of the ionosphere, and parallel potentials associated with the excitation of an ion acoustic wave. We will study how the dynamic ionosphere created auroral expansion.
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-08-28
    Description: An auroral ionosphere is generally incompressive and non-uniform medium with anisotropic conductivities. Compressibility may occur, however, following the onset of field line dipolarization. This behavior can happen when; (1) Westward directing electric fields transmitted from the dipolarization region accumulate both electrons and ions in equatorward latitudes in F region. (2) The mobility difference of electrons and ions in E region produces electrostatic potential in a quasi-neutral condition, positive in higher latitudes and negative in lower latitudes. (3) Density modulation in F region excites ion acoustic wave propagating along the field lines towards the magnetosphere. (4) The ion acoustic wave stops in the ionosphere for about 4min because of a low phase velocity (~1.6km/s). During this compressive interval, density accumulation in equatorward latitudes expands upstream to form a poleward expansion of auroras analogous to upstream propagation of a shock in traffic flow on crowded roads. Electrostatic potential produced in the E region generates field-aligned currents and closing Pedersen currents to retain electrostatic potential in a quasi-neutral ionosphere. The ion acoustic wave produces upward electric fields along the field lines in accordance with the Boltzmann relation which contributed to the ion upflow at topside ionosphere.
    Electronic ISSN: 2568-6402
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-29
    Description: Downstream observations at geosynchronous altitudes of field line dipolarization exhibit fundamental component of substorms associated with high velocity magnetotail flow bursts referred to as Bursty Bulk Flows. In growth phase of substorms, we found that the magnetosphere at geosynchronous orbit are in unstable conditions for Ballooning instability due to the appreciable tailward stretching of the flux tubes, and for slow magnetoacoustic wave due to the continuing field-aligned inflows of plasma sheet plasmas towards the equatorial plane. We propose following scenario of field line dipolarization in downstream locations; (1) The slow wave was excited through Ballooning instability by the arrival of Dipolarization Front at the leading edge of Bursty Bulk Flows. (2) In the equatorial plane, slow wave stretched the flux tube in dawn-dusk directions, which resulted in the spreading plasmas in dawn-dusk directions and reducing the radial pressure gradient in the flux tube. (3) As a result, the flux tube becomes a new equilibrium geometry in which curvature radius of new field lines increased in meridian plane, suggesting an onset of field line dipolarization. (4) Increasing curvature radius induced inductive electric fields of the order of few mV/m pointing westward in the equatorial plane, as well as radial electric fields associated with stretching flux tubes in dawn-dusk directions. Westward electric fields transmitted to the ionosphere produce a dynamic ionosphere where the E layer contains both dynamo (E · J  0) processes in it for generating field-aligned current system of Bostrom type. The dipolarization processes associated with changing the curvature radius occurred in the transitional intervals lasting for about 10 minutes preceding classical dipolarization composed of reduction of cross-tail currents and pileup of the magnetic fields transported from the tail.
    Electronic ISSN: 2568-6402
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...