ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-06-22
    Description: This report provides a summary of the 5th meeting of scientific experts on Fish Stocks in the Central Arctic Ocean (FiSCAO) on October 24‐26, 2017, in Ottawa, Canada. At the request of the 10 parties negotiating on an agreement to prevent unregulated commercial fishing in the High Seas portion of the Central Arctic Ocean (CAO), participants of the 5th FiSCAO meeting were tasked with addressing four Terms of Reference, summarized below:  ToR 1. Design a 1‐3 year long mapping program.  ToR 2. Design a monitoring program.  ToR 3. Identify human, financial, vessel/equipment resources needed for mapping and monitoring.  ToR 4. Develop data collection, sharing, and hosting protocols that outline the details of what and how data shall be collected, shared, and hosted for consideration by the Parties. The 5th FiSCAO meeting included scientific representatives from seven states including Canada, the People's Republic of China, the European Union, Iceland, the Republic of Korea, the Kingdom of Norway and the United States of America. The meeting also included representatives from the International Council for the Exploration of the Sea (ICES), the North Pacific Marine Science Organization (PICES) and the Arctic Council’s Protection of the Arctic Marine Environment (PAME) and Conservation of Arctic Flora and Fauna (CAFF) working groups. The report summarizes the elements for collecting baseline data (i.e., a mapping program) in the high seas CAO to achieve the goals of documenting species distributions, relative abundances and key ecosystem parameters (ToR 1). The mapping program describes the priority areas to sample, the types of data to collect and possible data collection approaches to employ. Participants emphasized that existing planned surveys are very limited, and that significant dedicated resources will be required to implement the mapping program. The report outlines a strategy for monitoring indicators of fish stocks and ecosystem components (ToR 2). The report includes a list of existing monitoring programs and a prioritized list of indicators to detect environmental change in the high seas CAO. Further refinement of a monitoring program will use information from the mapping program (ToR 1). Participants emphasized the need to begin monitoring as soon as possible and that additional research is required to operationalize monitoring indicators. The report summarizes the preliminary cost estimates (ToR 3) to implement a mapping program to collect data in the high seas portion of the CAO using a vessel of opportunity and in the Pacific Gateway region of the CAO using an independently‐organized survey. Cost implications for the monitoring program and other scientific activities are also listed (e.g., data analysis, data management). The report includes a draft data sharing policy as the foundation for a future data sharing protocol, including the technical specifications for data sharing (ToR 4). The development of the data sharing protocol will require negotiation and legal review among the participating states. A data management and data sharing pilot study on a CAO fish database is suggested to test a framework.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Miscellaneous , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © Elsevier B.V., 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 55 (2008): 1522-1539, doi:10.1016/j.dsr2.2008.04.024.
    Description: The VERtical Transport In the Global Ocean (VERTIGO) study examined particle sources and fluxes through the ocean’s “twilight zone” (defined here as depths below the euphotic zone to 1000 m). Interdisciplinary process studies were conducted at contrasting sites off Hawaii (ALOHA) and in the NW Pacific (K2) during 3 week occupations in 2004 and 2005, respectively. We examine in this overview paper the contrasting physical, chemical and biological settings and how these conditions impact the source characteristics of the sinking material and the transport efficiency through the twilight zone. A major finding in VERTIGO is the considerably lower transfer efficiency (Teff) of particulate organic carbon (POC), POC flux 500 / 150 m, at ALOHA (20%) vs. K2 (50%). This efficiency is higher in the diatom-dominated setting at K2 where silica-rich particles dominate the flux at the end of a diatom bloom, and where zooplankton and their pellets are larger. At K2, the drawdown of macronutrients is used to assess export and suggests that shallow remineralization above our 150 m trap is significant, especially for N relative to Si. We explore here also surface export ratios (POC flux/primary production) and possible reasons why this ratio is higher at K2, especially during the first trap deployment. When we compare the 500 m fluxes to deep moored traps, both sites lose about half of the sinking POC by 〉4000 m, but this comparison is limited in that fluxes at depth may have both a local and distant component. Certainly, the greatest difference in particle flux attenuation is in the mesopelagic, and we highlight other VERTIGO papers that provide a more detailed examination of the particle sources, flux and processes that attenuate the flux of sinking particles. Ultimately, we contend that at least three types of processes need to be considered: heterotrophic degradation of sinking particles, zooplankton migration and surface feeding, and lateral sources of suspended and sinking materials. We have evidence that all of these processes impacted the net attenuation of particle flux vs. depth measured in VERTIGO and would therefore need to be considered and quantified in order to understand the magnitude and efficiency of the ocean’s biological pump.
    Description: Funding for VERTIGO was provided primarily by research grants from the US National Science Foundation Programs in Chemical and Biological Oceanography (KOB, CHL, MWS, DKS, DAS). Additional US and non-US grants included: US Department of Energy, Office of Science, Biological and Environmental Research Program (JKBB); the Gordon and Betty Moore Foundation (DMK); the Australian Cooperative Research Centre program and Australian Antarctic Division (TWT); Chinese NSFC and MOST programs (NZJ); Research Foundation Flanders and Vrije Universiteit Brussel (FD, ME); JAMSTEC (MCH); New Zealand Public Good Science Foundation (PWB); and internal WHOI sources and a contribution from the John Aure and Cathryn Ann Hansen Buesseler Foundation (KOB).
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-06-24
    Description: Climate-driven changes in the marine ecosystem largely influence the distribution, abundance, and the consequent availability of marine resources to the fishery. In this study, we examined the potential habitat distributions of the neon flying squid ( Ommastrephes bartramii ) under the projected impacts of ocean warming. We used the sea surface temperature (SST) from the three CMIP5 climate scenarios (RCP4.5, RCP6.0, and RCP8.5) with the low to high future emissions. Based on the squid habitat models, SST showed the highest effect on the present potential squid habitat distribution that accounted for at least 60% of the predicted spatial patterns from May to July 2000–2010. This result underpinned the species' high sensitivity to the temperature changes in its feeding environments. Moreover, the projected future potential squid habitats revealed pronounced differences in the spatial and temporal patterns relative to the present habitat distributions across the different regions of the western and central North Pacific. The future squid habitat predictions revealed a net reduction in the suitable squid habitat coupled with the corresponding northward habitat retreat. Moreover, the magnitude of the predicted habitat changes was proportional to the levels of warming for the representative periods from May to July 2025, 2050, and 2100. The highest decrease in the spatial extent and poleward retreat of the potential squid habitat were observed from May to July 2100 under the RCP 8.5 scenario. These trends could translate to shorter squid fishing periods and offshore shifts of the squid fishing grounds. Thus, insights into the future spatio-temporal patterns and trajectories of the potential squid habitats could lend important implications on the availability of squid resources to the fishery and subsequent evaluation of squid fishery management options under climate change.
    Print ISSN: 1054-3139
    Electronic ISSN: 1095-9289
    Topics: Biology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-07-27
    Description: Neon flying squid ( Ommastrephes bartramii ) is a large pelagic squid internationally harvested in the North Pacific. Here, we examined its potential habitat in the central North Pacific using an ensemble modelling approach. Initially, ten statistical models were constructed by combining the squid fishing points, selected vertical layers of the sea temperature and salinity, sea surface height (SSH), and SSH gradient from the multi-variate ocean variational estimation system for the western North Pacific from June to July 1999–2011. The variable selection analyses have captured the importance of vertical temperature and salinity layers at the upper 300 and 440 m, respectively, coinciding with the reported vertical ranges of diel migration for the squid's primary prey species in the North Pacific. The evaluation of the habitat predictions using the independent sets of the presence data from 2012 to 2014 showed significant variability in the predictive accuracy, which is likely reflective of the interannual differences in environmental conditions across the validation periods. Our findings from ensemble habitat model approach using three-dimensional oceanographic data were able to characterize the near- and subsurface habitats of the neon flying squid. Moreover, our results underpinned the possible link between interannual environmental variability and spatio-temporal patterns of potential squid habitats. As such, these further suggest that an ensemble model approach could present a promising tool for operational fishery application and squid resource management.
    Print ISSN: 1054-3139
    Electronic ISSN: 1095-9289
    Topics: Biology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-02-20
    Description: Author(s): A. Yasui, Y. Saitoh, S.-i. Fujimori, I. Kawasaki, T. Okane, Y. Takeda, G. Lapertot, G. Knebel, T. D. Matsuda, Y. Haga, and H. Yamagami We have performed soft x-ray angle-resolved photoemission spectroscopy (ARPES) measurements on YbRh 2 Si 2 and clarified its three-dimensional bulk valence-band structures. The ARPES spectra have not only Yb 3+ multiplet peaks but also a finite contribution of Yb 2+ peaks at 15 K, corresponding to the va... [Phys. Rev. B 87, 075131] Published Tue Feb 19, 2013
    Keywords: Electronic structure and strongly correlated systems
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-12-01
    Description: The Japanese scallop ( Patinopecten ( Mizuhopecten ) yessoensis ) is an important commercial species in Funka Bay, Japan, where it is farmed using the hanging culture method. Our study was based on 6 years (from 2006 to 2011) of monthly in situ observations of scallop growth at Yakumo station. To produce a basic spatial distribution dataset, we developed an interpolation solution for the shortage of Chl- a concentration data available from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite. Additionally, we integrated four-dimensional variational (4D-VAR) assimilation water temperature data from ocean general circulation models (OGCMs), with four vertical levels (6, 10, 14, and 18 m) from the sea surface. Statistical models, including generalized additive models (GAMs) and generalized linear models, were applied to in situ observation data, satellite data, and 4D-VAR data to identify the influence of environment factors (interpolated Chl- a , temperature, and depth) on the growth of scallops, and to develop a three-dimensional growth prediction model for the Japanese scallops in Funka Bay. We considered three methods to simulate the growth process of scallops (accumulation, summation, and product), and used them to select the most suitable model. All the interpolated Chl- a concentrations and 4D-VAR temperature data were verified by shipboard data. The results revealed that GAM, using an accumulation method that was based on a combination of integrated temperature, integrated log Chl- a , depth, and number of days, was best able to predict the vertical and spatial growth of the Japanese scallop. The predictions were verified by in situ observations from different depths ( R 2 = 0.83–0.94). From the distribution of three-dimensional predicted scallop growth maps at each depth, it was suggested that the growth of the Japanese scallop was most favourable at 6 m and least favourable at 18 m, although variations occurred in each aquaculture region in different years. These variations were probably due to the ocean environment and climate variation.
    Print ISSN: 1054-3139
    Electronic ISSN: 1095-9289
    Topics: Biology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-11-24
    Description: To examine the relationship between carbon and nitrogen stable isotope (SI) ratios ( 13 C and 15 N) of zooplankton, we analyzed samples collected bimonthly from March to October 2009, from the euphotic layers of the Oyashio current along the A-line in the western North Pacific. Isotopic ratios of higher trophic levels such as predatory zooplankton and/or long-lived zooplankton varied little with season, while those of short-lived zooplankton were variable on the 15 N– 13 C map. We also analyzed preserved samples taken from the warm-core ring 86-B derived from the Kuroshio extension region. Although the zooplankton groups in the two regions exhibited different values in 15 N, the 15 N versus 13 C slopes for each ecosystem do not show significant differences. Statistical analysis conducted together with previously published data from the Antarctic Ocean and the Gulf of Alaska suggested a similar 15 N versus 13 C slope throughout the four regions. We attributed this common slope to physiological aspects of feeding processes (e.g. the kinetic isotope effects inherent in the processes of amino acid synthesis). The common pattern for all four oceanic regions suggests that SIs may be used to elucidate general patterns in ecosystems and biogeochemical cycles.
    Print ISSN: 0142-7873
    Electronic ISSN: 1464-3774
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-10-15
    Description: Liu, Y., Saitoh, S-I., Radiarta, I. N., Isada, T., Hirawake, T., Mizuta, H., and Yasui, H. 2013. Improvement of an aquaculture site-selection model for Japanese kelp ( Saccharina japonica ) in southern Hokkaido, Japan: an application for the impacts of climate events. – ICES Journal of Marine Science, 70: . Japanese kelp ( Saccharina japonica ) is one of the most valuable cultured and harvested kelp species in Japan. In this study, we added a physical parameter, sea surface nitrate (SSN) estimated from satellite remote sensing data, to develop a suitable aquaculture site-selection model (SASSM) for hanging cultures of Japanese kelp in southern Hokkaido, Japan. The local algorithm to estimate SSN was developed using satellite measurements of sea surface temperature and chlorophyll-a. We found a high correlation between satellite- and ship-measured data ( r 2 = 0.87, RMSE = 1.39). Multi-criteria evaluation was adapted to the SASSM to rank sites on a scale of 1 (least suitable) to 8 (most suitable). We found that 64.4% of the areas were suitable (score above 7). Minamikayabe was identified as the most suitable area, and Funka Bay also contained potential aquaculture sites. In addition, we examined the impact of El Niño/La Niña–Southern Oscillation (ENSO) events on Japanese kelp aquaculture and site suitability from 2003–2010. During El Niño events, the number of suitable areas (scores 7 and 8) decreased significantly, indicating that climatic conditions should be considered for future development of marine aquaculture.
    Print ISSN: 1054-3139
    Electronic ISSN: 1095-9289
    Topics: Biology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...