ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied climatology 59 (1998), S. 61-77 
    ISSN: 1434-4483
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Summary Continental wind storms are common along the Mediterranean coast. Along the northern coast they are mostly cold, similar to the Bora or the Mistral, and along the southern coast they are mostly warm, e.g., the Ghibli or the Shirocco. At the eastern Mediterranean basin and the Levant region, these storms are intermittently warm and cold during the same season and often even during the same event. Quasi-stationary systems, as well as moving disturbances, are the cause of such wind storms. Accordingly, the resulting weather conditions may be extremely converse due to the characteristics of the advected airmass. Specific regions in Israel, sensitive to easterly storms, are influenced by these wind storms for about 10% of the year (e.g., the westerly slopes of the mountains and valleys with west-east orientation). The frequency, however, of widespread storms covering the entire region is only approximately 1.4% of the entire year. These wind storms are therefore classified in the present study according to their climatological and synoptic characteristics; indicating that the dominant synoptic situation is the Red-Sea trough and the warm advections. These storms appear only from October-May and are most frequent during the cold season. The diurnal course is characterized by a strengthening in the morning hours and a weakening at noon and in the afternoon hours, due to the opposing effect of the westerly sea breeze, suppressing the easterly winds and the effect of katabatic winds. Nevertheless, synoptic conditions may contribute to this tendency as well. Accordingly, a significant increase in the frequencies of easterly storms, in relation to distance from the seashore has been identified. Although most of the stormy days are with westerly winds, the easterly wind storms has vast environmental implications, creating damage especially to agriculture and occasionally also to property and life; coastal flooding, potential air pollution, intensifying of forest fires and occasionally dust and sand storms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: 〈p〉The atmosphere is a chaotic system displaying recurrent large-scale configurations. Recent developments in dynamical systems theory allow us to describe these configurations in terms of the local dimension—a proxy for the active number of degrees of freedom—and persistence in phase space, which can be interpreted as persistence in time. These properties provide information on the intrinsic predictability of an atmospheric state. Here, this technique is applied to atmospheric configurations in the eastern Mediterranean, grouped into synoptic classifications (SCs). It is shown that local dimension and persistence, derived from reanalysis and CMIP5 models’ daily sea-level pressure fields, can serve as an extremely informative qualitative method for evaluating the predictability of the different SCs. These metrics, combined with the SC transitional probability approach, may be a valuable complement to operational weather forecasts and effective tools for climate model evaluation. This new perspective can be extended to other geographical regions.〈/p〉
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-06
    Description: To assess interannual changes in ocean-to-land advection, we extract zonal winds for February and March, 1949-2002, from NCEP/NCAR Reanalysis. Winds are analyzed at pairs of locations (55 deg N and 35 deg N) in the N. Pacific (15 deg W), N. Atlantic (30 deg W) and Baltic/Mediterranean (30 deg E). The monthly means at the northern and southern sites are negatively correlated. For N. Pacific, winds at 55 deg N show negative trends at all levels (magnitude increasing with altitude), versus positive at 35 deg N. An opposite scenario is observed over N. Atlantic, positive (negative) trends at 55 deg N (35 deg N) and similarly, but weaker, over the Baltic/Mediterranean. The geographic variability of trends is attributed to displacement of the polar vortex wave pattern. Increasing storm strength/frequency over N. Hemisphere oceans is inherently related to the strong positive trends in wind speed and vertical shear.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-17
    Description: The SSM/I (Spectral Sensor Microwave Imager) dataset is used to monitor surface wind speed and direction at four locations over the Eastern Mediterranean during December 1998 - January 1999. Time series of these data are compared to concurrent series of precipitation, surface temperature, humidity and winds at selected Israeli stations: Sde Dov (coastal), Bet Dagan (5 km. inland), Jerusalem (Judean Hills), Hafetz Haim (3 km. inland) and Sde Boker (central Negev). December 1998 and the beginning of January 1999 were dry in Israel, but significant precipitation was recorded at many stations during the second half of January (1999). SSM/I data show a surge in westerly surface winds west of Israel (32 N, 32.5 E) on 15 January, coinciding with the renewal of precipitation. We discuss the relevant circulation and pressure patterns during this transition in the context of the evolving meteorological conditions at the selected Israeli locations. The SSM/I dataset of near ocean surface winds, available for the last 12 years, is described. We analyze lagged correlation between these data and the Israeli station data and investigate possibility of predictive skill. Application of such relationships to short-term weather prediction would require real-time access to the SSM/I observations.
    Keywords: Meteorology and Climatology
    Type: Mar 01, 2000; Lihron Yaacov; Israel
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-04
    Description: The spatio-temporal distribution of lightning flashes over Israel and the neighboring area and its relation to the regional synoptic systems has been studied, based on data obtained from the Israel Lightning Location System (ILLS) operated by the Israel Electric Corporation (IEC). The system detects cloud-to-ground lightning discharges in a range of ~500 km around central Israel (32.5° N, 35° E). The study period was defined for annual activity from August through July, for 5 seasons in the period 2004–2010. The spatial distribution of lightning flash density indicates the highest concentration over the Mediterranean Sea, attributed to the contribution of moisture as well as sensible and latent heat fluxes from the sea surface. Other centers of high density appear along the coastal plain, orographic barriers, especially in northern Israel, and downwind from the metropolitan area of Tel Aviv, Israel. The intra-annual distribution shows an absence of lightning during the summer months (JJA) due to the persistent subsidence over the region. The vast majority of lightning activity occurs during 7 months, October to April. Although over 65 % of the rainfall in Israel is obtained during the winter months (DJF), only 35 % of lightning flashes occur in these months. October is the richest month, with 40 % of total annual flashes. This is attributed both to tropical intrusions, i.e., Red Sea Troughs (RST), which are characterized by intense static instability and convection, and to Cyprus Lows (CLs) arriving from the west. Based on daily study of the spatial distribution of lightning, three patterns have been defined; "land", "maritime" and "hybrid". CLs cause high flash density over the Mediterranean Sea, whereas some of the RST days are typified by flashes over land. The pattern defined "hybrid" is a combination of the other 2 patterns. On CL days, only the maritime pattern was noted, whereas in RST days all 3 patterns were found, including the maritime pattern. It is suggested that atmospheric processes associated with RST produce the land pattern. Hence, the occurrence of a maritime pattern in days identified as RST reflects an "apparent RST". The hybrid pattern was associated with an RST located east of Israel. This synoptic type produced the typical flash maximum over the land, but the upper-level trough together with the onshore winds it induced over the eastern coast of the Mediterranean resulted in lightning activity over the sea as well, similar to that of CLs. It is suggested that the spatial distribution patterns of lightning may better identify the synoptic system responsible, a CL, an "active RST" or an "apparent RST". The electrical activity thus serves as a "fingerprint" for the synoptic situation responsible for its generation.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union (EGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-07-26
    Description: Cloud-to-ground lightning flashes usually consist of one or several strokes coming in very short temporal succession and close spatial proximity. The common method for converting stroke data into flashes is using the National Lightning Detection Network (NALDN) thresholds of maximum temporal separation of 0.5 s and maximum lateral distance of 10 km radius between successive strokes. In the present study, we tested a location-based algorithm with several spatial and temporal ranges, and analyzed stroke data obtained by the Israel Lightning Location System (ILLS) during one year (1 August 2009–31 July 2010). We computed the multiplicity, the percentage of single stroke flashes and the geographical distribution of single vs. multiple-stroke flashes for thunderstorms in the Eastern Mediterranean region. Results show that for the NALDN thresholds, the percentage of single stroke flashes in Israel was 37% and the average multiplicity was 1.7. We re-analyzed the data with a spatial range that equals twice the ILLS location error and shorter times. For the new thresholds of maximum distance of 2.5 km and maximum allowed temporal separation of 0.2 s we find that the mean multiplicity of negative CGs is lowered to 1.4 and find a percentage of 58% of single stroke flashes. A unique severe storm from 30 October 2009 is analyzed and compared to the annual average of 2009/10, showing that large deviations from the mean values can occur in specific events.
    Electronic ISSN: 2195-9269
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union (EGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-02-03
    Description: Cloud-to-ground lightning flashes usually consist of one or several strokes coming in very short temporal succession and close spatial proximity. A commonly used method for converting stroke data into flashes is using the National Lightning Detection Network (NLDN) thresholds of maximum temporal separation of 0.5 s and maximum lateral distance of 10 km radius between successive strokes. In the present study, we tested a location-based algorithm with several spatial and temporal ranges, and analyzed stroke data obtained by the Israel Lightning Location System (ILLS) during one year (1.8.2009–31.7.2010). We computed the multiplicity, the percentage of single stroke flashes and the geographical distribution of average multiplicity values for thunderstorms in the Eastern Mediterranean region. Results show that for the NLDN thresholds, the percentage of single stroke flashes in Israel was 37% and the average multiplicity was 1.7. We reanalyzed the data with a spatial range that equals twice the ILLS location error and shorter times. For the new thresholds of maximum distance of 2.5 km and maximum allowed temporal separation of 0.2 s we find that the mean multiplicity of negative CGs is lowered to 1.4 and find a percentage of 58% of single stroke flashes. A unique severe storm from 30 October 2009 is analyzed and compared with the annual average of 2009/2010, showing that large deviations from the mean values can occur in specific events.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union (EGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2003-08-01
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2007-07-05
    Description: The Mediterranean is one of the most cyclogenetic regions in the world. The cyclones are concentrated along its northern coasts and their tracks are oriented more or less west-east, with several secondary tracks connecting them to Europe and to North Africa. The aim of this study is to examine scenarios in the development of Mediterranean cyclones, based on five selected winter seasons (October–March). We detected the cyclones subjectively using 6-hourly Sea-Level Pressure maps, based on the NCAR/NCEP reanalysis archive. HMSO (1962) has shown that most Mediterranean cyclones (58%) enter the Mediterranean from the Atlantic Ocean (through Biscay and Gibraltar), and from the south-west, the Sahara Desert, while the rest are formed in the Mediterranean Basin itself. Our study revealed that only 13% of the cyclones entered the Mediterranean, while 87% were generated in the Mediterranean Basin. The entering cyclones originate in three different regions: the Sahara Desert (6%), the Atlantic Ocean (4%), and Western Europe (3%). The cyclones formed within the Mediterranean Basin were found to generate under the influence of external cyclonic systems, i.e. as "daughter cyclones" to "parent cyclones" or troughs. These parent systems are located in three regions: Europe (61%), North Africa and the Red Sea (34.5%) and the Mediterranean Basin itself (4.5%). The study presents scenarios in the development of Mediterranean cyclones during the winter season, emphasizing the cyclogenesis under the influence of various external forcing. The large difference with respect to the findings of HMSO (1962) is partly explained by the dominance of spring cyclones generating in the Sahara Desert, especially in April and May that were not included in our study period.
    Print ISSN: 1680-7340
    Electronic ISSN: 1680-7359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union (EGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2007-07-04
    Description: The influence of mineral and anthropogenic dust components on the VIS-NIR-SWIR spectral reflectance of artificial laboratory dust mixtures was evaluated and used in combination with Partial Least Squares (PLS) regression to construct a model that correlates the dust content with its reflectance. Small amounts of dust (0.018–0.33 mg/cm2) were collected using glass traps placed in different indoor environments in Tel Aviv, Israel during the spring and summer of 2005. The constructed model was applied to reflectance spectroscopy measurements derived from the field dust samples to assess their mineral content. Additionally, field samples were examined using Principal Component Analysis (PCA) to identify the most representative spectral pattern for each season. Across the visible range of spectra two main spectral shapes were observed, convex and concave, though spectra exhibiting hybrid shapes were also seen. Spectra derived from spring season dust samples were characterized mostly by a convex shape, which indicates a high mineral content. In contrast, the spectra generated from summer samples were characterized generally by a concave shape, which indicates a high organic matter content. In addition to this seasonal variation in spectral patterns, spectral differences were observed associated with the dwelling position in the city. Samples collected in the city center showed higher organic content, whereas samples taken from locations at the city margins, near the sea and next to open areas, exhibited higher mineral content. We conclude that mineral components originating in the outdoor environment influence indoor dust loads, even when considering relatively small amounts of indoor settled dust. The sensitive spectral-based method developed here has potentially many applications for environmental researchers and policy makers concerned with dust pollution.
    Print ISSN: 1680-7340
    Electronic ISSN: 1680-7359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union (EGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...