ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Mafic and intermediate granulite xenoliths, collected from Cenozoic alkali basalts, provide samples of the lower crust in western Saudi Arabia. The xenoliths are metaigneous two-pyroxene and garnet granulites. Mineral and whole rock compositions are inconsistent with origin from Red Sea rift-related basalts, and are compatible with origin from island arc calc-alkaline and low-potassium tholeiitic basalts. Most of the samples are either cumulates from mafic magmas or are restites remaining after partial melting of intermediate rocks and extraction of a felsic liquid. Initial87Sr/86Sr ratios are less than 0.7032, except for two samples at 0.7049. The Sm-Nd data yield TDM model ages of 0.64 to 1.02 Ga, similar to typical Arabian-Nubian Shield upper continental crust. The isotopic data indicate that the granulites formed from mantle-derived magmas with little or no contamination by older continent crust. Calculated temperatures and pressures of last reequilibration of the xenoliths show that they are derived from the lower crust. Calculated depths of origin and calculated seismic velocities for the xenoliths are in excellent agreement with the crustal structure model of Gettings et al. (1986) based on geophysical data from western Saudi Arabia. Estimation of mean lower crustal composition, using the granulite xenoliths and the Gettings et al. (1986) crustal model, suggests a remarkably homogeneous mafic lower crust, and an andesite or basaltic andesite bulk composition for Pan-African juvenile continental crust.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Esmeralda Bank is the southernmost active volcano in the Izu-Volcano-Mariana Arc. This submarine volcano is one of the most active vents in the western Pacific. It has a total volume of about 27 km3, rising to within 30 m of sea level. Two dredge hauls from Esmeralda recovered fresh, nearly aphyric, vesicular basalts and basaltic andesites and minor basaltic vitrophyre. These samples reflect uniform yet unusual major and trace element chemistries. Mean abundances of TiO2 (1.3%) and FeO* (12.6%) are higher and CaO (9.2%) and Al2O3 (15.1%) are lower than rocks of similar silica content from other active Mariana Arc volcanoes. Mean incompatible element ratios K/Rb (488) and K/Ba (29) of Esmeralda rocks are indistinguishable from those of other Mariana Arc volcanoes. On a Ti-Zr plot, Esmeralda samples plot in the field of oceanic basalts while other Mariana Arc volcanic rocks plot in the field for island arcs. Incompatible element ratios K/Rb and K/Ba and isotopic compositions of Sr (87Sr/86Sr=0.70342–0.70348), Nd (εND=+7.6 to +8.1), and O(δ18O=+5.8 to +5.9) are incompatible with models calling for the Esmeralda source to include appreciable contributions from pelagic sediments or fresh or altered abyssal tholeiite from subduction zone melting. Instead, incompatible element and isotopic ratios of Esmeralda rocks are similar to those of intra-plate oceanic islands or “hot-spot” volcanoes in general and Kilauean tholeiites in particular. The conclusion that the source for Esmeralda lavas is an ocean-island type mantle reservoir is preferred. Esmeralda Bank rare earth element patterns are inconsistent with models calling for residual garnet in the source region, but are adequately modelled by 7–10% equilibrium partial melting of spinel lherzolite. This is supported by consideration of the results of melting experiments at 20 kbars, 1,150° C with CO2 and H2O as important volatile components. These experiments further indicate that low MgO (4.1%), MgO/FeO*(0.25) and Ni(12 ppm) in Esmeralda Bank melts are characteristic of initial melts generated by moderate degrees of melting of hydrous and carbonated mantle. Consideration of experimental determinations and spinel-lherzolite to garnet-lherzolite stabilities indicates Esmeralda Bank melts were generated by partial melting within the upper 60–110 km of the mantle.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Late Precambrian crustal evolution in the North Eastern Desert of Egypt occurred in a strongly extensional tectonic environment and was accompanied by abundant bimodal igneous activity. The extrusive and intrusive expressions of this magmatism, known as the Dokhan Volcanics and Pink Granites, respectively, were studied in detail from two areas. The Dokhan Volcanics and associated feeder dikes consist of a “mafic” suite dominated by andesites (∼60% SiO2) and smaller volumes of basalt and a “felsic” suite composed of rhyolite tuffs, ignimbrites and hypabyssal intrusions (∼72–78% SiO2). The rocks of the mafic suite display calc-alkaline trends on an AFM diagram but are enriched in incompatibles such as TiO2, P2O5, K2O, Rb, Sr, Ba, Zr, Y, Nb, and LREE. Rare earth element patterns are steep, with (Ce/Yb)n = 7.7 to 16.8. They contain moderate Ni (60 ppm) and Cr (95 ppm), indicating limited low-P fractionation. The melts of the mafic suite are interpreted to have formed either by ≤25% batch melting of eclogite or by ∼10% batch melting of LREE-enriched garnet lherzolite. The rocks of the felsic suite include Dokhan rhyolites and the epizonal Pink Granites. These contain 72–78% SiO2, are metaluminous and peraluminous, and have the high K2O/Na2O and FeO*/(FeO*+MgO) characteristic of post-tectonic, “A-type” granites. They are moderately enriched in incompatible elements, but their REE patterns overlap with those of the mafic suite, from which they can be distinguished by deep europium anomalies (Eu/Eu*=0.08–0.64) and flat HREE patterns=((Yb/Er)n=0.90–1.16). They share with the rocks of the mafic suite isotopic characteristics of depleted mantle, precluding anatexis of much older continental crust. The europium anomalies covary with Sr contents and indicate that plagioclase control was important, while the flat HREE patterns preclude residual garnet in the source. Hence the felsic melts could not have formed by anatexis of garnet-bearing mafic lower crust. Such melts could have formed by anatexis of amphibolite-facies crust, an interpretation which is not favored because the melts are not saturated with P2O5. Alternatively, the felsic melts may have formed via low-P fractional crystallization of the mafic melts, with about 2/3 removal of mostly plagioclase and amphibole along with minor apatite and zircon. This may have been accompanied in the latest stages of magmatic evolution by liquid-state fractionation such as thermo-gravitational diffusion or halide complexing.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford UK : Blackwell Science Pty
    The @island arc 7 (1998), S. 0 
    ISSN: 1440-1738
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford UK : Blackwell Science Pty
    The @island arc 7 (1998), S. 0 
    ISSN: 1440-1738
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Volcanoes of the Mariana arc system produce magmas that belong to several liquid lines of descent and that originated from several different primary magmas. Despite differences in parental magmas, phenocryst assemblages are very similar throughout the arc. The different liquid lines of descent are attributed to differences in degree of silica saturation of the primary liquids and in the processes of magmatic evolution (fractional crystallization vs magma mixing). Pseudoternary projections of volcanic rocks from several arc volcanoes are used to show differences between different magmatic suites. In most of the arc, parental liquids were Ol- and Hy-normative basalts that crystallized olivine, augite, and plagioclase (± iron-titanium oxide) and then plagioclase and two pyroxenes, apparently at low pressure. Eruptive rocks follow subparallel liquid lines of descent on element–element diagrams and on pseudoternary projections. Magmas at North Hiyoshi are Ne-normative and have a liquid line of descent along the thermal divide due to precipitation of olivine, augite, and plagioclase. Derived liquids are large ion lithophile element (LILE)-rich. Magmas at other Hiyoshi seamounts included an alkaline component but had more complex evolution. Those at Central Hiyoshi formed by a process dominated by mixing alkaline and subalkaline magmas, whereas those at other Hiyoshi seamounts evolved by combined magma mixing and fractional crystallization. Influence of the alkaline component wanes as one goes south from North Hiyoshi. Alkaline and subalkaline magmas were also mixed to produce magmas erupted at the Kasuga seamounts that are behind the arc front. The alkaline magmas at both Hiyoshi and Kasuga seamounts had different sources from those of the subalkaline magmas at those sites as indicated by trace element ratios and by Nd.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1440-1738
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Noble gas concentrations and isotopic compositions have been measured in eight samples of pillow basalt glasses collected from seven different localities along 250 km of the Mariana Trough spreading and rifting axis. The samples have uniform and mid-ocean ridge basalt (MORB)-like 3He/4He values of 9–12 × 10–6 (6.4–8.6 times atmospheric) despite large variations in 4He. Concentrations of the noble gases Ne, Ar, Kr, and Xe show much smaller variations between samples, but larger variations in isotopic compositions of Ne, Ar, and Xe. Excess radiogenic 21Ne is observed in some samples. 40Ar/36Ar varies widely (atmospheric to 1880). Kr is atmospheric in composition for all samples. Some samples show a clear excess 129Xe, which is a well-known MORB signature. Isotopic compositions of the heavier noble gases (Ar, Kr, and Xe) in some samples, however, show more atmospheric components. These data reflect the interaction of a MORB-like magma with an atmospheric component such as seawater or of a depleted mantle source with a water-rich component that was probably derived from the subducting slab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1440-1738
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract The Mariana Trough is an active back-arc basin, with the rift propagating northward ahead of spreading. The northern part of the Trough is now rifting, with extension accommodated by combined stretching and igneous intrusion. Deep structural graben are found in a region of low heat flow, and we interpret these to manifest a low-angle normal fault system that defines the extension axis between 19°45′ and 21°10′N. A single dredge haul from the deepest (∼5.5 km deep) of these graben recovered a heterogeneous suite of volcanic and plutonic crustal rocks and upper mantle peridotites, providing the first report of the deeper levels of back-arc basin lithosphere. Several lines of evidence indicate that these rocks are similar to typical back-arc basin lithosphere and are not fragments of rifted older arc lithosphere. Hornblende yielded an 40Ar/39Ar age of 1.8 ± 0.6 Ma, which is interpreted to approximate the time of crust formation. Harzburgite spinels have moderate Cr# (〈40) and coexisting compositions of clinopyroxene (CPX) and plagioclase (PLAB) fall in the field of mid-ocean ridge basalt (MORB) gabbros. Crustal rocks include felsic rocks (70-80% SiO2) and plutonic rocks that are rich in amphibole. Chemical compositions of crustal rocks show little evidence for a ‘subduction component’, and radiogenic isotopic compositions correspond to that expected for back-arc basin crust of the Mariana Trough. These data indicate that mechanical extension in this part of the Mariana Trough involves lithosphere that originally formed magmatically. These unique exposures of back-arc basin lithosphere call for careful study using ROVs and manned submersibles, and consideration as an ocean drilling program (ODP) drilling site.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1440-1738
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Late Miocene (7–9 Ma) basaltic rocks from the Monbetsu-Kamishihoro graben in northeast Hokkaido have chemical affinities to certain back-arc basin basalts (referred to herein as Hokkaido BABB). Pb-, Nd- and Sr-isotopic compositions of the Hokkaido BABB and arc-type volcanic rocks (11–13 Ma and 4–4.5 Ma) from the nearby region indicate mixing between the depleted mantle and an EM II-like enriched component (e.g. subducted pelagic sediment) in the magma generation. At a given 87Sr/86Sr, Hokkaido BABB have slightly lower 143Nd/144Nd and slightly less radiogenic 206Pb/204Pb compared with associated arc-type lavas, but both these suites are difficult to distinguish solely on the basis of isotopic compositions. These isotopic data indicate that while generation of the Hokkaido BABB involves smaller amounts of the EM II-like enriched component than do associated arc lavas, Hokkaido BABB are isotopically distinct from basalts produced at normal back-arc basin spreading centers. Instead, northeast Hokkaido BABB are more similar to basalts erupted during the initial rifting stage of back-arc basins. The Monbetsu-Kamishihoro graben may have developed in association with extension that formed the Kurile Basin, suggesting that opening of the basin continued until late Miocene (7–9 Ma).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1440-1738
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Pumice samples from Fukutoku-oka-no-ba in the Izu–Bonin – Mariana (IBM) arc were analysed for 40 trace elements and Sr, Nd, and Pb isotopic compositions. These samples are shoshonites (59.4–61.8 wt% SiO2), characterized by high contents of K2O (3.74–4.64 wt%), Ba (1274–1540 p.p.m.), Rb (91–105 p.p.m.), and light rare earth elements. The characteristics of alkali-element enrichment are similar to those of other parts of the Alkalic Volcano Province (AVP) in the northern Mariana and southernmost Volcano arcs. Sr (87Sr/86Sr = 0.7036–0.7038) and Pb isotopic compositions (206Pb/204Pb = 19.08–19.11, 207Pb/204Pb = 15.62–15.63, 208Pb/204Pb = 38.85–38.91) of Fukutoku-oka-no-ba pumice are relatively radiogenic, whereas Nd is unradiogenic (143Nd/144Nd = 0.51283–0.51286). Fukutoku-oka-no-ba is isotopically distinct from Iwo Jima and is similar to the Hiyoshi Volcanic Complex, suggesting that Fukutoku-oka-no-ba might have a magma source similar to that of the Hiyoshi volcanic complex. Plots of Pb and Nd isotopes for AVP lavas trend toward the fields of ocean island basalt (OIB) source and pelagic sediments, which are possible sources of AVP enrichments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1440-1738
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract  Oxygen is the most abundant element in the earth, and isotopic analysis of this element in island arc lavas potentially provides sensitive constraints on the proportion of oxygen recycled from subducted material, relative to that extracted from the mantle. Here we report on 225 new oxygen isotopic analyses of whole-rock and glass samples, and clinopyroxene separates, from lavas collected from the southernmost 1500 km of the Izu–Bonin–Mariana (IBM) convergent margin. Whole-rock samples clustered around a mean of 6.11 ± 0.47‰, whereas Mariana Trough glasses and mafic melts, calculated to be in equilibrium with mafic phenocrysts, clustered narrowly around a mean of 5.7‰. These data demonstrate that unequivocal identification of magmatic oxygen requires analysis of fresh glass or mafic minerals, and that the source of southern IBM Arc melts is entirely, or almost entirely, in equilibrium with normal mantle oxygen. If the elemental enrichments characteristic of the subduction component originate in subducted materials, these oxygen isotopic data are most consistent with the interaction of a small amount of sediment melt (〈4%; mostly less than 1%) with mantle peridotite to yield the hybrid mantle that melts to form IBM Arc magmas.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...