ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2018-12-11
    Description: Our present understanding of ocean acidification (OA) impacts on marine organisms caused by rapidly rising atmospheric carbon dioxide (CO2) concentration is almost entirely limited to single species responses. OA consequences for food web interactions are, however, still unknown. Indirect OA effects can be expected for consumers by changing the nutritional quality of their prey. We used a laboratory experiment to test potential OA effects on algal fatty acid (FA) composition and resulting copepod growth. We show that elevated CO2 significantly changed the FA concentration and composition of the diatom Thalassiosira pseudonana, which constrained growth and reproduction of the copepod Acartia tonsa. A significant decline in both total FAs (28.1 to 17.4 fg cell−1) and the ratio of long-chain polyunsaturated to saturated fatty acids (PUFA:SFA) of food algae cultured under elevated (750 µatm) compared to present day (380 µatm) pCO2 was directly translated to copepods. The proportion of total essential FAs declined almost tenfold in copepods and the contribution of saturated fatty acids (SFAs) tripled at high CO2. This rapid and reversible CO2-dependent shift in FA concentration and composition caused a decrease in both copepod somatic growth and egg production from 34 to 5 eggs female−1 day−1. Because the diatom-copepod link supports some of the most productive ecosystems in the world, our study demonstrates that OA can have far-reaching consequences for ocean food webs by changing the nutritional quality of essential macromolecules in primary producers that cascade up the food web.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 486 . pp. 37-46.
    Publication Date: 2018-06-25
    Description: Changing seawater chemistry towards reduced pH as a result of increasing atmospheric carbon dioxide (CO2) is affecting oceanic organisms, particularly calcifying species. Responses of non-calcifying consumers are highly variable and mainly mediated through indirect ocean acidification effects induced by changing the biochemical content of their prey, as shown within single species and simple 2-trophic level systems. However, it can be expected that indirect CO2 impacts observed at the single species level are compensated at the ecosystem level by species richness and complex trophic interactions. A dampening of CO2-effects can be further expected for coastal communities adapted to strong natural fluctuations in pCO2, typical for productive coastal habitats. Here we show that a plankton community of the Kiel Fjord was tolerant to CO2 partial pressure (pCO2) levels projected for the end of this century (〈1400 µatm), and only subtle differences were observed at the extremely high value of 4000 µatm. We found similar phyto- and microzooplankton biomass and copepod abundance and egg production across all CO2 treatment levels. Stoichiometric phytoplankton food quality was minimally different at the highest pCO2 treatment, but was far from being potentially limiting for copepods. These results are in contrast to studies that include only a single species, which observe strong indirect CO2 effects for herbivores and suggest limitations of biological responses at the level of organism to community. Although this coastal plankton community was highly tolerant to high fluctuations in pCO2, increase in hypoxia and CO2 uptake by the ocean can aggravate acidification and may lead to pH changes outside the range presently experienced by coastal organisms.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  (Student research project), IFM-GEOMAR, Kiel, 73 pp
    Publication Date: 2020-10-26
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...