ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
  • 1
    Call number: MOP Per 409(69)
    In: Technical report
    Type of Medium: Monograph available for loan
    Pages: III, 53 S. : graph. Darst., Kt.
    Series Statement: Technical report / European Centre for Medium Range Weather Forecasts 69
    Location: MOP - must be ordered
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-05
    Description: A comprehensive dataset of non-native species (NNS) was assembled by combining the SInAS database of alien species occurrences (Seebens, 2021) with several other publicly available databases and NNS lists to examine NNS diversity globally (Bailey et al., 2020; Campbell et al., 2016; Carlton & Eldredge, 2009; Casties et al., 2016; Eldredge & Carlton, 2015; Hewitt et al., 2002, 2004; Lambert, 2002; Meyer, 2000; NEMESIS, 2017, 2020; Paulay et al., 2002; Richardson et al., 2020; Schwindt et al., 2020; Sturtevant et al., 2019; U.S. Geological Survey, 2017; Wonham & Carlton, 2005) to examine NNS diversity globally. The SInAS_AlienSpeciesDB_2.4.1 file was used as the base file for our dataset. Species without assignment of invaded country/region were removed from the dataset. Then, species assigned only as CASUAL and ABSENT in the columns degreeOfEstablishment (N) and occurrenceStatus (L), respectively, were also removed due to their undetermined non-native establishment status in those particular regions (Groom et al., 2019). Following, species from other publicly available databases and NNS lists that had not been listed for particular region/s in the SInAS database were added to the file. The species that were both native and NNS within a continent were retained in the dataset. Accordingly, the dataset consisted 36 822 species established outside of their native regions, out of which 36 326 came from Seebens (2021) and 496 species from other databases and NNS lists. Binominal scientific names, phylum, class, and family levels were assigned to each species based on the SInAS_AlienSpeciesDB_2.4.1_FullTaxaList file that was originally determined following Global Biodiversity Information Facility (GBIF). When a species was not automatically assigned to binominal scientific name and/or taxonomic level, an additional manual search of GBIF, World Register of Marine Species (WoRMS) and a general internet search engine was conducted in June and July 2022, and September 2023. Also, to examine NNS diversity among different habitats (i.e., terrestrial, freshwater, and marine), we assigned one or more habitats for each species based on the Step2_StandardTerms_GRIIS file; habitat data in the Step2_StandardTerms_GRIIS file originated from the Global Register of Introduced and Invasive Species (GRIIS). Again, if habitat(s) was(were) not automatically assigned to a species, an additional manual search of WoRMS and a general internet search engine was conducted from July to September 2022. We emphasize that due to the great number of species in our dataset and changing information availability over time, there is a possibility that we did not list all potential habitats for all species. Brackish habitats were defined as marine based on the Venice System (1958). Regions were assigned based on the geographic continental definitions (i.e., North America, South America, Europe, Africa, Asia, and Australia), with Pacific islands as a separate region due to their unclear/undefined continental affiliations (National Geographic Society, 2022). Finally, global estimated biodiversity (i.e., numbers of species per taxonomic group) of each particular phylum, class, and family was obtained from the GBIF in October 2022 (GBIF, 2022).
    Keywords: Area/locality; Class; Code; Family; Habitat; Identification; Phylum; Reference/source; Scientific name; Taxon/taxa
    Type: Dataset
    Format: text/tab-separated-values, 664480 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-05
    Description: Underlying established alien species lists for three recipeint regions: Great Lakes-St. Lawrence River (GLSL), North and Baltic Seas (NBS), and Chesapeake Bay (CB). Each species entry is recorded against its taxonomic grouping and geographic origin.
    Keywords: Class; Kingdom; Ocean and sea region; Origin; Phylum; Species
    Type: Dataset
    Format: text/tab-separated-values, 1956 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-01-13
    Description: Dieses Projekt startete im Oktober 2015 mit einer verrückten Idee: Schreiben und Einreichen eines Antrags auf Förderung einer internationalen, multidisziplinären und nicht-traditionell wissenschaftlichen Projektinitiative… innerhalb von 48 Stunden. Und es hat geklappt ! Eine Gruppe hoch motivierter, junger Forscher aus Kanada und Europa hat sich gebildet, um Kunst und Wissenschaft zu kombinieren und eine Reihe von Comics über Permafrost (gefrorene Böden) zu produzieren. Unser Ziel ist es, zu zeigen, wie wissenschaftliches Arbeiten im hohen Norden funktioniert, mit dem Schwerpunkt auf Geländearbeit und den schnellen Umweltveränderungen in der Arktis. Die Zielgruppe sind Kinder, Jugendliche, Eltern und Lehrer, mit dem allgemeinen Ziel, Permafrost zugänglicher und mit Spaß zu vermitteln. Denn ratet mal: Permafrost ist ein Gebiet von mehr als 20 Millionen km2 auf der Nordhalbkugel – ein riesiges Gebiet. Durch die Klimaerwärmung taut der Permafrost und wird zu instabil, um Häuser, Straßen und Flughäfen zu tragen. Durch das Auftauen von gefrorenem Boden werden außerdem Pflanzen- und Tierhabitate zerstört, die Wasserqualität und Ökologie von Seen beeinflusst und auf Grund der Freisetzung von Kohlenstoff als Treibhausgas in die Atmosphäre wird der Klimawandel sogar verstärkt. Daher betrifft Permafrost und seine Reaktion auf den Klimawandel uns alle. Die Internationale Permafrost Gemeinschaft (IPA) hat das Projekt als „Action Group“ von Beginn an unterstützt und seitdem sind noch viele weitere Sponsoren dazugekommen. Und hier sind wir nun: Zwei Jahre nach der ersten Idee. Ihr seid kurz davor das zu lesen, was das Ergebnis eines ständigen Austauschs zwischen Künstlern und Wissenschaftlern ist. Zunächst hatten wir eine Ausschreibungsrunde und erhielten 49 Bewerbungen von Künstlern aus 16 Ländern. Durch ein Bewertungsverfahren wählten wir zwei Künstlerinnen aus, um an diesem Projekt zu arbeiten: Noémie Ross aus Kanada und Heta Nääs aus Finnland. Mit den Beiträgen von Wissenschaftlern erstellten Noémie und Heta fantastische Cartoons, die ein paar der Veränderungen erklären, die in Permafrost-Gebieten passieren. Zum Beispiel: wie wird die Welt der Menschen und Tiere beeinflusst und was machen Forscher, um diese Prozesse besser zu verstehen, sodass sie den Einheimischen helfen können, innovative Wege zur Anpassung zu finden.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Miscellaneous , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-10-17
    Description: We present Bedmap2, a new suite of gridded products describing surface elevation, ice-thickness and the seafloor and subglacial bed elevation of the Antarctic south of 60� S. We derived these products using data from a variety of sources, including many substantial surveys completed since the original Bedmap compilation (Bedmap1) in 2001. In particular, the Bedmap2 ice thickness grid is made from 25 million measurements, over two orders of magnitude more than were used in Bedmap1. In most parts of Antarctica the subglacial landscape is visible in much greater detail than was previously available and the improved datacoverage has in many areas revealed the full scale of mountain ranges, valleys, basins and troughs, only fragments of which were previously indicated in local surveys. The derived statistics for Bedmap2 show that the volume of ice contained in the Antarctic ice sheet (27 million km3) and its potential contribution to sea-level rise (58 m) are similar to those of Bedmap1, but the mean thickness of the ice sheet is 4.6% greater, the mean depth of the bed beneath the grounded ice sheet is 72m lower and the area of ice sheet grounded on bed below sea level is increased by 10 %. The Bedmap2 compilation highlights several areas beneath the ice sheet where the bed elevation is substantially lower than the deepest bed indicated by Bedmap1. These products, along with grids of data coverage and uncertainty, provide new opportunities for detailed modelling of the past and future evolution of the Antarctic ice sheets.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-01-14
    Description: Invasive alien species continue to spread and proliferate in waterways worldwide, but environmental drivers of invasion dynamics lack assessment. Knowledge gaps are pervasive in the Global South, where the frequent heavy human‐modification of rivers provides high opportunity for invasion. In southern Africa, the spatio‐temporal ecology of a widespread and high‐impact invasive alien snail, Tarebia granifera, and its management status is understudied. Here, an ecological assessment was conducted at seven sites around Nandoni Reservoir on the Luvuvhu River in South Africa. The distribution and densities of T. granifera were mapped and the potential drivers of population structure were explored. T. granifera was widespread at sites impacted to varying extents due to anthropogenic activity, with densities exceeding 500 individuals per square meter at the most impacted areas. T. granifera predominantly preferred shallow and sandy environments, being significantly associated with sediment (i.e., chlorophyll‐a, Mn, SOC, SOM) and water (i.e., pH, conductivity, TDS) variables. T. granifera seemed to exhibit two recruitment peaks in November and March, identified via size‐based stock assessment. Sediment parameters (i.e., sediment organic matter, sediment organic carbon, manganese) and water chemistry (i.e., pH, total dissolved solids, conductivity) were found to be important in structuring T. granifera populations, with overall snail densities highest during the summer season. We provide important autecological information and insights on the distribution and extent of the spread of T. granifera. This may help in the development of invasive alien snail management action plans within the region, as well as modelling efforts to predict invasion patterns elsewhere based on environmental characteristics.
    Description: Alexander von Humboldt‐Stiftung http://dx.doi.org/10.13039/100005156
    Description: National Research Foundation http://dx.doi.org/10.13039/501100001321
    Description: University of Venda http://dx.doi.org/10.13039/501100008976
    Keywords: ddc:577.6 ; aquatic non‐native invasions ; environmental gradients ; Global South ; human‐modified river ; quilted melania ; reservoir
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-06-27
    Description: © The Author(s), (2022). This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ahmed, D. A., Hudgins, E. J., Cuthbert, R. N., Kourantidou, M., Diagne, C., Haubrock, P. J., Leung, B., Liu, C., Leroy, B., Petrovskii, S., Beidas, A., & Courchamp, F. Managing biological invasions: the cost of inaction. Biological Invasions. (2022), https://doi.org/10.1007/s10530-022-02755-0.
    Description: Ecological and socioeconomic impacts from biological invasions are rapidly escalating worldwide. While effective management underpins impact mitigation, such actions are often delayed, insufficient or entirely absent. Presently, management delays emanate from a lack of monetary rationale to invest at early invasion stages, which precludes effective prevention and eradication. Here, we provide such rationale by developing a conceptual model to quantify the cost of inaction, i.e., the additional expenditure due to delayed management, under varying time delays and management efficiencies. Further, we apply the model to management and damage cost data from a relatively data-rich genus (Aedes mosquitoes). Our model demonstrates that rapid management interventions following invasion drastically minimise costs. We also identify key points in time that differentiate among scenarios of timely, delayed and severely delayed management intervention. Any management action during the severely delayed phase results in substantial losses (〉50% of the potential maximum loss). For Aedes spp., we estimate that the existing management delay of 55 years led to an additional total cost of approximately $ 4.57 billion (14% of the maximum cost), compared to a scenario with management action only seven years prior (〈 1% of the maximum cost). Moreover, we estimate that in the absence of management action, long-term losses would have accumulated to US$ 32.31 billion, or more than seven times the observed inaction cost. These results highlight the need for more timely management of invasive alien species—either pre-invasion, or as soon as possible after detection—by demonstrating how early investments rapidly reduce long-term economic impacts.
    Description: The authors acknowledge the French National Research Agency (ANR-14-CE02-0021) and the BNP-Paribas Foundation Climate Initiative for funding the InvaCost project that allowed the construction of the InvaCost database. The present work was conducted following a workshop funded by the AXA Research Fund Chair of Invasion Biology and is part of the AlienScenarios project funded by BiodivERsA and Belmont-Forum call 2018 on biodiversity scenarios. DAA is funded by the Kuwait Foundation for the Advancement of Sciences (KFAS), grant no. PR1914SM-01 and the Gulf University for Science and Technology (GUST) internal seed fund, grant no. 234597. EJH is supported by a Fonds de recherche du Québec—nature et téchnologies B3X fellowship. RNC acknowledges funding from the Alexander von Humboldt Foundation. CL was sponsored by the PRIME programme of the German Academic Exchange Service (DAAD) with funds from the German Federal Ministry of Education and Research (BMBF).
    Keywords: InvaCost ; Invasive alien species ; Logistic growth ; Socioeconomic impacts ; Prevention and biosecurity ; Long-term management
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...