ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-09-28
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 2519–2538, doi:10.1002/2016JC012331.
    Description: High horizontal-resolution (1=12:5° and 1=25°) 41-layer global simulations of the HYbrid Coordinate Ocean Model (HYCOM), forced by both atmospheric fields and the astronomical tidal potential, are used to construct global maps of sea surface height (SSH) variability. The HYCOM output is separated into steric and nonsteric and into subtidal, diurnal, semidiurnal, and supertidal frequency bands. The model SSH output is compared to two data sets that offer some geographical coverage and that also cover a wide range of frequencies—a set of 351 tide gauges that measure full SSH and a set of 14 in situ vertical profilers from which steric SSH can be calculated. Three of the global maps are of interest in planning for the upcoming Surface Water and Ocean Topography (SWOT) two-dimensional swath altimeter mission: (1) maps of the total and (2) nonstationary internal tidal signal (the latter calculated after removing the stationary internal tidal signal via harmonic analysis), with an average variance of 1:05 and 0:43 cm2, respectively, for the semidiurnal band, and (3) a map of the steric supertidal contributions, which are dominated by the internal gravity wave continuum, with an average variance of 0:15 cm2. Stationary internal tides (which are predictable), nonstationary internal tides (which will be harder to predict), and nontidal internal gravity waves (which will be very difficult to predict) may all be important sources of high-frequency ‘‘noise’’ that could mask lower frequency phenomena in SSH measurements made by the SWOT mission.
    Description: Office of Naval Research Grant Numbers: N00014-11-1-0487 , N00014-15-1-2288; NASA Earth and Space Science Grant Number: NNX16AO23H; University of Michigan; National Aeronautics and Space Administration Grant Numbers: NNX13AD95Q , NNX16AH79G; National Science Foundation Grant Number: OCE-1351837; National Aeronautics and Space Administration Grant Numbers: NNX13AE32G , NNX16AH76G , NNX13AE46G
    Description: 2017-09-28
    Keywords: Internal gravity waves ; Internal tides ; Spectral density
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-10-01
    Description: Also published as Reviews of Geophysics and Space Physics, Vol. 15, No. 4, November 1977, pp. 385-420
    Description: From moored data, primarily temperature, of the Mid-Ocean Dynamics Experiment (ModeI) and its successor experiments we find a statistical description of the mesoscale variability. In the ModeI area itself the spectral characteristics of the thermocline and the deep water are different. The thermocline is conveniently described as being made up of three spectral bands: a ' low-frequency' band dominated by zonal velocity fluctuations, an 'eddy-containing' band in which the velocity field is nearly isotropic, and a 'high-frequency' band consistent with models of geostrophic turbulence. In the deep water the zonal dominance at low frequencies is not apparent, and there is enhanced energy at periods of 20-50 days. Vertical structure scales with WK BJ approximation in the high-frequency band but not in the lower frequencies, where low vertical modes dominate the motion. Linear models do not adequately describe the data in the ModeI region. Differences between rough and smooth topography regions are clearly seen only at 1500 m, where there is a loss of energy consistent with a reduced barotropic motion. Other differences, while apparently real, are small. It is found, consistent with the results of Schmitz (1976a), that the ModeI region is atypical of the midocean in that large changes of energy level are found elsewhere. A region due east of ModeI has slightly reduced kinetic energy levels in the main thermocline, but deep energy levels are much lower. Potential energy is less variable than kinetic; in the eastern region the frequency spectra change structure slightly. Linear models may be more adequate there. With more than 2 years of data, no statistically significant heat flux was found in the ModeI area, except for a weak zonal flux in the deep water. There is no direct evidence for baroclinic instability as a significant mechanism of eddy generation; the Gulf Stream is a possible, if unconfirmed, source.
    Description: Prepared for the Office of Naval Research under Contracts N00014-66-C-0241; NR 083-004~ N00014-74-C-0262; NR 083-004 and N00014-76-C-0197; NR 083-400; and for the National Science Foundation under Grants GX-29054, GX-29034, OCE 75-03962 and ID0-82534.
    Keywords: Ocean temperature ; Thermoclines
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2017-01-07
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September, 1976
    Description: The temporal and spatial variability of low frequency moored temperature and velocity observations, obtained as part of the Mid-Ocean Dynamics Experiment (MODE), are analyzed to study the kinematics and energetics of mesoscale eddies in the ocean. The temporal variability of the low frequency motions is characterized by three regimes: very low frequencies with periods greater than 200 days, an eddy energy containing band of 80 to 120 day periods, and high frequencies wìth periods less than 30 days. At very low frequencies, the zonal kinetic energy exceeds the meridional at all depths. In the thermocline, the very low frequency zonal flow dominates the total kinetic energy. The greatest contribution to the kinetic and potential energy in the MODE region, except for the thermocline zonal flow, is from an eddy energy containing band of 80 to 120 day periods. Eddy scale kinetic energy spatial variations are confined to this band. At high frequencies, the kinetic and potential energy scale with frequency as ω-2.5 and with depth in the WKB sense. Energy at high frequencies is partitioned evenly between zonal kinetic, meridional kinetic and potential energy and is homogeneous over 100 km. Using the technique of empirical orthogonal expansion, the vertical structure of the energetically dominant eddies is described by a few modes. The displacement is dominated by a mode with a thermocline maximum and in phase displacements with depth, while the kinetic energy is dominated by an equivalent barotropic mode. A smaller portion of the kinetic and potential energy is associated with out of phase thermocline and deep water currents and displacements. The dynamics of the mesoscale eddies are very nonlinear. Using the vertical veering of the current at MODE Center, the estimated horizontal advection of heat contributes significantly to the low frequency thermal balance. The observed very low frequency anisotropic flow is consistent with the nonlinear eddy spindown models, dominated by cascades of vorticity and energy. At high frequencies, the spectral similarity is consistent with advected geostrophic turbulence.
    Description: The National Science Foundation supported the work through grants GX29034 and IDO-75-03998 and a graduate fellowship.
    Keywords: Ocean currents ; Ocean circulation ; Ocean temperature
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: 7112504 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-01-04
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 283–300, doi:10.1175/JPO-D-11-0240.1.
    Description: Motivated by the recent interest in ocean energetics, the widespread use of horizontal eddy viscosity in models, and the promise of high horizontal resolution data from the planned wide-swath satellite altimeter, this paper explores the impacts of horizontal eddy viscosity and horizontal grid resolution on geostrophic turbulence, with a particular focus on spectral kinetic energy fluxes Π(K) computed in the isotropic wavenumber (K) domain. The paper utilizes idealized two-layer quasigeostrophic (QG) models, realistic high-resolution ocean general circulation models, and present-generation gridded satellite altimeter data. Adding horizontal eddy viscosity to the QG model results in a forward cascade at smaller scales, in apparent agreement with results from present-generation altimetry. Eddy viscosity is taken to roughly represent coupling of mesoscale eddies to internal waves or to submesoscale eddies. Filtering the output of either the QG or realistic models before computing Π(K) also greatly increases the forward cascade. Such filtering mimics the smoothing inherent in the construction of present-generation gridded altimeter data. It is therefore difficult to say whether the forward cascades seen in present-generation altimeter data are due to real physics (represented here by eddy viscosity) or to insufficient horizontal resolution. The inverse cascade at larger scales remains in the models even after filtering, suggesting that its existence in the models and in altimeter data is robust. However, the magnitude of the inverse cascade is affected by filtering, suggesting that the wide-swath altimeter will allow a more accurate determination of the inverse cascade at larger scales as well as providing important constraints on smaller-scale dynamics.
    Description: BKA received support from Office of Naval Research Grant N00014-11-1-0487, National Science Foundation (NSF) Grants OCE-0924481 and OCE- 09607820, and University of Michigan startup funds. KLP acknowledges support from Woods Hole Oceanographic Institution bridge support funds. RBS acknowledges support from NSF grants OCE-0960834 and OCE-0851457, a contract with the National Oceanography Centre, Southampton, and a NASA subcontract to Boston University. JFS and JGR were supported by the projects ‘‘Global and remote littoral forcing in global ocean models’’ and ‘‘Agesotrophic vorticity dynamics of the ocean,’’ respectively, both sponsored by the Office of Naval Research under program element 601153N.
    Description: 2013-08-01
    Keywords: Eddies ; Nonlinear dynamics ; Ocean dynamics ; Satellite observations ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-04-10
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 7803–7821, doi:10.1002/2017JC013009.
    Description: Two global ocean models ranging in horizontal resolution from 1/12° to 1/48° are used to study the space and time scales of sea surface height (SSH) signals associated with internal gravity waves (IGWs). Frequency-horizontal wavenumber SSH spectral densities are computed over seven regions of the world ocean from two simulations of the HYbrid Coordinate Ocean Model (HYCOM) and three simulations of the Massachusetts Institute of Technology general circulation model (MITgcm). High wavenumber, high-frequency SSH variance follows the predicted IGW linear dispersion curves. The realism of high-frequency motions (〉0:87 cpd) in the models is tested through comparison of the frequency spectral density of dynamic height variance computed from the highest-resolution runs of each model (1/25° HYCOM and 1/48° MITgcm) with dynamic height variance frequency spectral density computed from nine in situ profiling instruments. These high-frequency motions are of particular interest because of their contributions to the small-scale SSH variability that will be observed on a global scale in the upcoming Surface Water and Ocean Topography (SWOT) satellite altimetry mission. The variance at supertidal frequencies can be comparable to the tidal and low-frequency variance for high wavenumbers (length scales smaller than ∼50 km), especially in the higher-resolution simulations. In the highest-resolution simulations, the high-frequency variance can be greater than the low-frequency variance at these scales.
    Description: National Aeronautics and Space Administration (NASA) Earth and Space Science Fellowship Grant Number: NNX16AO23H Margaret and Herman Sokol Faculty; Office of Naval Research (ONR) Grant Numbers: N00014-15-1-2288 , N00014-11-1-0487; National Science Foundation (NSF) Grant Numbers: OCE-0968783 , OCE-1351837 , NNX13AE32G , NNX16AH76G , NNX13AE46 , NNX13AD95Q , NNX16AH79G
    Description: 2018-04-10
    Keywords: Internal gravity waves ; Internal tides ; Sea surface height variability ; High-resolution ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-12
    Description: Using Geosat altimeter data for 26 months from November 1986 to December 1988 and a newly developed technique for the analysis of height data, the variability of the sea level and the surface geostrophic currents in the Southern Ocean is investigated. The processed Geosat data are used to examine the relationship between the mesoscale variability and the values of mean circulation, determined from historical hydrographic data. It is shown that the geographical patterns of both the mean flow and the mesoscale variability are correlated. An efficient objective-analysis algorithm for generating smoothed fields from observations randomly distributed in time and two space dimensions is developed and applied to 26 months of Geosat data. The smoothed fields are then used to investigate the large-scale low-frequency variability of the sea level and the surface geostrophic velocity in the Southern Ocean, in order to identify the mode of the observed variations.
    Keywords: OCEANOGRAPHY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 95; 17877-17
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Motivated by the substantial sensitivity of eddies in two-layer quasigeostrophic (QG) turbulence models to the strength of bottom drag, this study explores the sensitivity of eddies in more realistic ocean general circulation model (OGCM) simulations to bottom drag strength. The OGCM results are interpreted using previous results from horizontally homogeneous, two-layer, flat-bottom, f-plane, doubly periodic QG turbulence simulations and new results from two-layer beta-plane QG turbulence simulations run in a basin geometry with both flat and rough bottoms. Baroclinicity in all of the simulations varies greatly with drag strength, with weak drag corresponding to more barotropic flow and strong drag corresponding to more baroclinic flow. The sensitivity of the baroclinicity in the QG basin simulations to bottom drag is considerably reduced, however, when rough topography is used in lieu of a flat bottom. Rough topography reduces the sensitivity of the eddy kinetic energy amplitude and horizontal length scales in the QG basin simulations to bottom drag to an even greater degree. The OGCM simulation behavior is qualitatively similar to that in the QG rough bottom basin simulations in that baroclinicity is more sensitive to bottom drag strength than are eddy amplitudes or horizontal length scales. Rough topography therefore appears to mediate the sensitivity of eddies in models to the strength of bottom drag. The sensitivity of eddies to parameterized topographic internal lee wave drag, which has recently been introduced into some OGCMs, is also briefly discussed. Wave drag acts like a strong bottom drag in that it increases the baroclinicity of the flow, without strongly affecting eddy horizontal length scales.
    Keywords: Oceanography
    Type: GSFC-E-DAA-TN42359 , Journal of Physical Oceanography (ISSN 0022-3670) (e-ISSN 1520-0485); 47; 8; 1941-1959
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-14
    Description: Deep fluctuations in current along the equator in the Central Pacific are dominated by coherent structures which correspond closely to narrow-band propagating equatorial waves. Currents were measured roughly at 1500 and 3000 m depths at five moorings between 144 and 148 deg W from January 1981 to March 1983, as part of the Pacific Equatorial Ocean Dynamics program. In each frequency band resolved, a single complex empirical orthogonal function accounts for half to three quarters of the observed variance in either zonal or meridional current. Dispersion for equatorial first meridional Rossby and Rossby gravity waves is consistent with the observed vertical-zonal coherence structure. The observations indicate that energy flux is westward and downward in long first meridional mode Rossby waves at periods 45 days and longer, and eastward and downward in short first meridional mode Rossby waves and Rossby-gravity waves at periods 30 days and shorter. A local minimum in energy flux occurs at periods corresponding to a maximum in upper-ocean meridional current energy contributed by tropical instability waves. Total vertical flux across the 9- to 90-day period range is 2.5 kW/m.
    Keywords: OCEANOGRAPHY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 93; 15455-15
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-09-01
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...