ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1520-4804
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of computer aided molecular design 5 (1991), S. 1-3 
    ISSN: 1573-4951
    Keywords: Electrostatics ; Computational methods ; π-π Interactions ; New directions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of computer aided molecular design 5 (1991), S. 41-54 
    ISSN: 1573-4951
    Keywords: Electrostatic fields ; Distributed multipoles ; Hvdrogen bonding ; Molecular graphics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Summary We compare two methods (Mulliken charges and a distributed multipole analysis, DMA) of representing an ab initio charge distribution for calculating the electrostatic field and potential outside the molecule, using pyrimidine and the RNA base uracil as examples. This is done using a 3-D graphical display of the electrostatic fields, which, when used with real-time rotation, zooming and clipping, has many advantages for qualitatively assessing the electrostatic interactions of a molecule. The errors involved in using Mulliken point charges may be of similar magnitude to the total electrostatic field in regions which are important in recognition processes. The DMA representation automatically includes the anisotropic electrostatic effects of non-spherical features in the charge distribution of each atom, and yet the displayed electrostatic fields around the atoms which have lone-pair density do not show marked anisotropy.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 34 (1988), S. 85-93 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: This short communication outlines preliminary work aimed at understanding the recognition of sialylated oligosaccharides by influenza virus haemagglutinin. Initial efforts to model the complex have used the electrostatic interactions between atoms in the binding pocket and (2) as a means of constraining the conformational search in docking these two molecules. Some important features of the lowest energy structure are discussed.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: An empirical approach for the computation of log P for flexible molecules has been developed. This approach is based upon the use of fragmental parameters for obtaining the free energy of solvation of a given molecular conformation in both water and octan-1-ol. Two parametrization methods have been investigated, and the quality of the fragment parameters obtained assessed by computation of log P values for a number of compounds which can only adopt a single conformation. Comparison of these calculated log P values with experimental measurements revealed that simple empirical models which assume a linear relationship of transfer free energy and fragment solvent accessible area do not adequately represent the interaction of polar fragments with water molecules. In the second parametrization method, therefore, a novel step function was introduced, based upon physical models of the specific hydration of polar fragments able to participate in hydrogen bonding, by water molecules. Fragment parameters derived by the second approach gave excellent agreement between calculated and experimental log P values for rigid molecules containing several classes of functional group.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 44 (1992), S. 219-233 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A novel algorithm for computing the water/1-octanol partition coefficient, log P, of conformationally flexible molecules, has been investigated using calculations upon a number of uncharged, linear dipeptides. In this method (which appears to be the first to consider explicitly the effects of the population of accessible conformational minima in both phases), the partition coefficient for each dipeptide was calculated from the overall energy change associated with moving the relevant gas-phase conformational distribution into water and into 1-octanol. These energies were computed using solvation contributions based upon the solvent accessible molecular surface area and two sets of empirical parameters. In these initial studies, gas-phase conformational minima were generated using systematic search methods. While the standard error in the computed logP values was disappointing, reasonable agreement was observed between calculated and experimental logP values for the set of model dipeptides, especially when specific hydration interactions involving polar fragments were correctly included in the empirical solvation term. These results indicate that the physical basis of many correction factors employed in the ClogP algorithm for computing logP probably arise from neglect of the redistribution of conformer populations as flexible molecules partition between water and 1-octanol.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 33 (1993), S. 971-984 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The observation that short, linear alanine-based polypeptides form stable α-helices in aqueous solution has allowed the development of well-defined experimental systems with which to study the influence of amino acid sequence upon the stability of secondary structure. We have performed detailed conformational searches upon six alanine-based peptides in order to rationalize the observed variation in the α-helical stability in terms of side-chain-backbone and side-chain-side-chain interactions. Although a simple, gas-phase, potential model was used to obtain the conformational energies for these peptides, good agreement was obtained with experiment regarding their relative α-helical stabilities. Our calculations clearly indicate that valine, isoleucine, and phenylalanine residues should destabilize the α-helical conformation when included within alanine-based peptides because of energetically unfavorable side-chain-backbone interactions, which tend to result in the formation of regions of 310-helix. In the case of valine, the destabilization most probably arises from entropic effects as the isopropyl side chain can assume more orientations in the 310-helical form of the peptide. A detailed examination of very short-range interactions in these peptides has also indicated that an interaction, involving fewer than five consecutive residues, whose stabilizing effect reinforces that of the (i, i + 4) hydrogen bond may be the basis of the requirement for increased nucleation (σ) and propagation parameters (s) required by Zimm-Bragg theory to predict the α-helical content for compounds in this class of short peptides. Our calculations complement recent work using modified Zimm-Bragg and Lifson-Roig theories of the helix-coil transition, and are consistent with molecular dynamics simulations upon linear peptides in aqueous solution. © 1993 John Wiley & Sons, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 44 (1992), S. 65-76 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Photocaged compounds in combination with time-resolved X-ray crystallographic methods may enable the observation of short-lived intermediates in enzyme reactions within crystals. To date, the number of suitable photolabile groups remains limited. As part of efforts to develop general approaches to the design of photolabile compounds with potential use in studying the structure of intermediates formed during the hydrolysis of peptide bonds by aspartic proteinases, we have begun to explore the use of INDO/S methods in predicting the photochemical properties of candidate structures. In this paper, the results of ZINDO calculations upon a series of substituted 3-phenylisochromenes, which have been characterized photochemically, are reported. Although prediction of the major absorption bands of these isochromenes was achieved with reasonable accuracy, the inclusion of solvent effects through a simple representation of methanol using a self-consistent reaction field (SCRF) gave poorer agreement. However, if specific hydrogen-bonding interactions between methanol and the isochromenes were modeled, then good agreement between theory and experiment was obtained. The orbitals involved in the electronic transitions associated with the longest wavelength peaks were visualized. Significantly, the σ* antibonding interaction that cleaves the carbon-oxygen bond of the isochromene arises from twisting of the heterocyclic ring accompanying excitation of the electron into the LUMO. Our calculations are consistent with the observed photochemical reactivity of the substituted 3-phenylisochromenes, suggesting that such approaches are viable for screening candidate photosubstrates for use in probing enzyme reaction mechanisms. © 1992 John Wiley & Sons, Inc.
    Additional Material: 2 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: An integrated molecular modeling system for designing and studying organic and bioorganic molecules and their molecular complexes using molecular mechanics is described. The graphically controlled, atom-based system allows the construction, display and manipulation of molecules and complexes having as many as 10,000 atoms and provides interactive, state-of-the-art molecular mechanics on any subset of up to 1,000 atoms. The system semiautomates the graphical construction and analysis of complex structures ranging from polycyclic organic molecules to biopolymers to mixed molecular complexes. We have placed emphasis on providing effective searches of conformational space by a number of different methods and on highly optimized molecular mechanics energy calculations using widely used force fields which are supplied as external files. Little experience is required to operate the system effectively and even novices can use it to carry out sophisticated modeling operations. The software has been designed to run on Digital Equipment Corporation VAX computers interfaced to a variety of graphics devices ranging from inexpensive monochrome terminals to the sophisticated graphics displays of the Evans & Sutherland PS300 series.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...