ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-02-01
    Description: Coccolithophores belong to the most abundant calcium carbonate mineralizing organisms. Coccolithophore biomineralization is a complex and highly regulated process, resulting in a product that strongly differs in its intricate morphology from the abiogenically produced mineral equivalent. Moreover, unlike extracellularly formed biological carbonate hard tissues, coccolith calcite is neither a hybrid composite, nor is it distinguished by a hierarchical microstructure. This is remarkable as the key to optimizing crystalline biomaterials for mechanical strength and toughness lies in the composite nature of the biological hard tissue and the utilization of specific microstructures. To obtain insight into the pathway of biomineralization of Emiliania huxleyi coccoliths, we examine intracrystalline nanostructural features of the coccolith calcite in combination with cell ultrastructural observations related to the formation of the calcite in the coccolith vesicle within the cell. With TEM diffraction and annular dark-field imaging, we prove the presence of planar imperfections in the calcite crystals such as planar mosaic block boundaries. As only minor misorientations occur, we attribute them to dislocation networks creating small-angle boundaries. Intracrystalline occluded biopolymers are not observed. Hence, in E. huxleyi calcite mosaicity is not caused by occluded biopolymers, as it is the case in extracellularly formed hard tissues of marine invertebrates, but by planar defects and dislocations which are typical for crystals formed by classical ion-by-ion growth mechanisms. Using cryo-preparation techniques for SEM and TEM, we found that the membrane of the coccolith vesicle and the outer membrane of the nuclear envelope are in tight proximity, with a well-controlled constant gap of ~4 nm between them. We describe this conspicuous connection as a not yet described interorganelle junction, the “nuclear envelope junction”. The narrow gap of this junction likely facilitates transport of Ca2+ ions from the nuclear envelope to the coccolith vesicle. On the basis of our observations, we propose that formation of the coccolith utilizes the nuclear envelope–endoplasmic reticulum Ca2+-store of the cell for the transport of Ca2+ ions from the external medium to the coccolith vesicle and that E. huxleyi calcite forms by ion-by-ion growth rather than by a nanoparticle accretion mechanism.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: video
    Format: video
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-02-01
    Description: Climate change challenges plankton communities, but evolutionary adaptation could mitigate the potential impacts. Here, we tested with the phytoplankton species Emiliania huxleyi whether adaptation to a stressor under laboratory conditions leads to equivalent fitness gains in a more natural environment. We found that fitness advantages that had evolved under laboratory conditions were masked by pleiotropic effects in natural plankton communities. Moreover, new genotypes with highly variable competitive abilities evolved on timescales significantly shorter than climate change.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-03-11
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-03-11
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  , 2 pp.
    Publication Date: 2018-05-22
    Description: Wochenbericht FS Alkor Reise 509, Fahrtabschnitt 15.05 – 20.05.2018
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-02-01
    Description: Stocking can be an effective management and conservation tool, but it also carries the danger of eroding natural population structure, introducing non-native strains and reducing genetic diversity. Sea trout, the anadromous form of the brown trout (Salmo trutta), is a highly targeted species that is often managed by stocking. Here, we assess the present-day population genetic structure of sea trout in a backdrop of 125 years of stocking in Northern Germany. The study area is characterized by short distances between the Baltic and North Sea river watersheds, historic use of fish from both watersheds for stocking, and the creation of a potential migration corridor between the Baltic and North Sea with the opening of the Kiel Canal 120 years ago. A survey of 24 river systems with 180 SNPs indicates that moderate but highly significant population genetic structure has persisted both within and between the Baltic and North Sea. This genetic structure is characterized by (i) heterogeneous patterns of admixture between the Baltic and North Sea that do not correlate with distance from the Kiel Canal and are therefore likely due to historic stocking practises, (ii) genetic isolation by distance in the Baltic Sea at a spatial scale of 〈 200 km that is consistent with the homing behaviour of sea trout, and (iii) at least one genetically distinct Baltic Sea river system. In light of these results, we recommend keeping fish of North Sea and Baltic Sea origin separate for stocking, and restricting Baltic Sea translocations to neighbouring river systems.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: other
    Format: other
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-07-30
    Description: Physical, chemical, biological oceanography and fisheries research This multidisciplinary cruise extended a long-term data series on (eco-)system composition and functioning of the Baltic Sea, with a focus on the deeper basins. The series has been collected in similar form since 1986. A key characteristic of the cruise is the integration of oceanographic and biological information to enhance understanding of environmental and (fish) population fluctuations, and evolutionary processes in this system. The resulting datasets and samples feed into the EU projects BONUS BLUEWEBS and Horizon 2020 GoJelly, and the US NSF project "Evolutionary Responses to Global Change in Salinity and Temperature". The spatial focus lay on the Bornholm Basin as most important spawning area of Baltic cod, but also included the Western Baltic Sea, Arkona and Gotland Basin, Gdansk Deep, and Stolpe Trench. Specific investigations included a detailed hydrological survey (oxygen, salinity, temperature) of the Bornholm Basin, plankton surveys (zoo- and ichthyplankton, with the goal to determine the composition and the abundance and vertical and horizontal distribution of species, and to take samples for later measurements of nutritional condition), and pelagic fishery hauls for clupeid and gadoid fish. The latter served to determine stock structure, gonadal maturation, stomach contents, and egg production of sprat and cod, and to sample tissue and otolith samples for individual-level genetic and ecological analyses of cod. The abundance and distribution of fishes in the cruise area was also assessed with hydroacoustic methods. Additional cruise components were: (i) cod gonad sampling for fecundity studies and liver sampling for parasite studies. (ii) vertically resolved phytoplankton and zooplankton sampling for studies of plankton phenology. (iii) in-depth sampling of planktonic food webs for dietary tracer work. (iv) copepode Eurytemora affinis sampling along the salinity gradient of the Baltic Sea for the study of local adapations.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Format: image
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-04-15
    Description: Genetic data have great potential for improving fisheries management by identifying the fundamental management units—that is, the biological populations—and their mixing. However, so far, the number of practical cases of marine fisheries management using genetics has been limited. Here, we used Atlantic cod in the Baltic Sea to demonstrate the applicability of genetics to a complex management scenario involving mixing of two genetically divergent populations. Specifically, we addressed several assumptions used in the current assessment of the two populations. Through analysis of 483 single nucleotide polymorphisms (SNPs) distributed across the Atlantic cod genome, we confirmed that a model of mechanical mixing, rather than hybridization and introgression, best explained the pattern of genetic differentiation. Thus, the fishery is best monitored as a mixed-stock fishery. Next, we developed a targeted panel of 39 SNPs with high statistical power for identifying population of origin and analyzed more than 2,000 tissue samples collected between 2011 and 2015 as well as 260 otoliths collected in 2003/2004. These data provided high spatial resolution and allowed us to investigate geographical trends in mixing, to compare patterns for different life stages and to investigate temporal trends in mixing. We found similar geographical trends for the two time points represented by tissue and otolith samples and that a recently implemented geographical management separation of the two populations provided a relatively close match to their distributions. In contrast to the current assumption, we found that patterns of mixing differed between juveniles and adults, a signal likely linked to the different reproductive dynamics of the two populations. Collectively, our data confirm that genetics is an operational tool for complex fisheries management applications. We recommend focussing on developing population assessment models and fisheries management frameworks to capitalize fully on the additional information offered by genetically assisted fisheries monitoring.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    GEOMAR
    In:  GEOMAR, Kiel, Germany, 11 pp.
    Publication Date: 2019-03-18
    Description: Dates of Cruise: 15.05. – 30.05.2018 Areas of Research: Physical, chemical, biological and fishery oceanography Port Calls: Riga. Latvia, 22.05.2018
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Breusing, Corinna; Vrijenhoek, Robert C; Reusch, Thorsten B H (2017): Widespread introgression in deep-sea hydrothermal vent mussels. BMC Evolutionary Biology, 17(1), https://doi.org/10.1186/s12862-016-0862-2
    Publication Date: 2019-04-30
    Description: The provided file archive contains genotype data from mid-Atlantic hydrothermal vent mussels (genus Bathymodiolus) at 18 SNP loci and the mitochondrial ND4 gene (BMAR_Baz_Bpu_genotypes.txt). The subfolders denote statistical programs used in the multilocus genotyping study and contain input files and scripts that were used in the respective analyses. Our analyses indicate that B. azoricus and B. puteoserpentis hybridize introgressively across a large geographic area without evidence for general hybrid incompatibilities. While these findings shed new light onto the genetic structure of this hybrid zone, many aspects about its nature still remain obscure. Our study sets a baseline for further research that should primarily focus on the acquisition of additional mussel samples and environmental data, a detailed exploration of vent areas and hidden populations as well as genomic analyses in both mussel hosts and their bacterial symbionts.
    Type: Dataset
    Format: application/zip, 29.0 kBytes
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...