ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Series available for loan
    Series available for loan
    Clausthal-Zellerfeld : Pilger
    Associated volumes
    Call number: SR 90.0064(14) ; M 91.0327
    In: Clausthaler tektonische Hefte
    Type of Medium: Series available for loan
    Pages: 152 S. + 1 Beil.
    Edition: 4. neubearb. Aufl.
    ISBN: 3876391148
    Series Statement: Clausthaler tektonische Hefte 14
    Language: German
    Location: Lower compact magazine
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The existing experimental data [Ferry and Spear 1978; Perchuk and Lavrent'eva 1983] on Mg−Fe partitioning between garnet and biotite are disparate. The underlying assumption of ideal Mg−Fe exchange between the minerals has been examined on the basis of recently available thermochemical data. Using the updated mixing parameters for the pyrope-almandine asymmetric regular solution as inputs [Ganguly and Saxena 1984; Hackler and Wood 1984], thermodynamic analysis points to non-ideal mixing in the phlogopite-annite binary in the temperature range of 550°C–950°C. The non-ideality can be approximated by a temperature-independent, one constant Margules parameter. The retrieved values for enthalpy of mixing for Mg−Fe biotites and the standard state enthalpy and entropy changes of the exchange reaction were combined with existing thermochemical data on grossular-pyrope and grossular-almandine binaries to obtain geothermometric expressions for Mg−Fe fractionation between biotite and garnet. [T in K] $$\begin{gathered} {\text{T(HW) = [20286 + 0}}{\text{.0193P - \{ 2080(X}}_{{\text{Mg}}}^{{\text{Gt}}} {\text{)}}^{\text{2}} {\text{ - 6350(X}}_{{\text{Fe}}}^{{\text{Gt}}} {\text{)}}^{\text{2}} \hfill \\ {\text{ - 13807(X}}_{{\text{Ca}}}^{{\text{Gt}}} {\text{)(1 - X}}_{{\text{Mn}}}^{{\text{Gt}}} {\text{) + 8540(X}}_{{\text{Fe}}}^{{\text{Gt}}} {\text{)(X}}_{{\text{Mg}}}^{{\text{Gt}}} {\text{)(1 - X}}_{{\text{Mn}}}^{{\text{Gt}}} {\text{)}} \hfill \\ {\text{ + 4215(X}}_{{\text{Ca}}}^{{\text{Gt}}} {\text{)(X}}_{{\text{Mg}}}^{{\text{Gt}}} {\text{ - X}}_{{\text{Fe}}}^{{\text{Gt}}} {\text{)\} + 4441}}{{{\text{(2X}}_{{\text{Mg}}}^{{\text{Bt}}} {\text{ - 1)]}}} \mathord{\left/ {\vphantom {{{\text{(2X}}_{{\text{Mg}}}^{{\text{Bt}}} {\text{ - 1)]}}} {{\text{[13}}{\text{.138}}}}} \right. \kern-\nulldelimiterspace} {{\text{[13}}{\text{.138}}}} \hfill \\ {\text{ + 8}}{\text{.3143 InK}}_{\text{D}} {\text{ + 6}}{\text{.276(X}}_{{\text{Ca}}}^{{\text{Gt}}} ){\text{(1 - X}}_{{\text{Mn}}}^{{\text{Gt}}} )] \hfill \\ {\text{T(GS) = [13538 + 0}}{\text{.0193P - \{ 837(X}}_{{\text{Mg}}}^{{\text{Gt}}} )^{\text{2}} {\text{ - 10460(X}}_{{\text{Fe}}}^{{\text{Gt}}} )^2 \hfill \\ {\text{ - 13807(X}}_{{\text{Ca}}}^{{\text{Gt}}} )(1{\text{ - X}}_{{\text{Mn}}}^{{\text{Gt}}} {\text{) + 19246(X}}_{{\text{Fe}}}^{{\text{Gt}}} ){\text{(X}}_{{\text{Mg}}}^{{\text{Gt}}} ){\text{(1 - X}}_{{\text{Mn}}}^{{\text{Gt}}} ) \hfill \\ {\text{ }}{{{\text{ + 5649(X}}_{{\text{Ca}}}^{{\text{Gt}}} ){\text{(X}}_{{\text{Mg}}}^{{\text{Gt}}} {\text{ - X}}_{{\text{Fe}}}^{{\text{Gt}}} ){\text{\} + 7972(2X}}_{{\text{Mg}}}^{{\text{Bt}}} {\text{ - 1)]}}} \mathord{\left/ {\vphantom {{{\text{ + 5649(X}}_{{\text{Ca}}}^{{\text{Gt}}} ){\text{(X}}_{{\text{Mg}}}^{{\text{Gt}}} {\text{ - X}}_{{\text{Fe}}}^{{\text{Gt}}} ){\text{\} + 7972(2X}}_{{\text{Mg}}}^{{\text{Bt}}} {\text{ - 1)]}}} {{\text{[6}}{\text{.778}}}}} \right. \kern-\nulldelimiterspace} {{\text{[6}}{\text{.778}}}} \hfill \\ {\text{ + 8}}{\text{.3143InK}}_{\text{D}} {\text{ + 6}}{\text{.276(X}}_{{\text{Ca}}}^{{\text{Gt}}} )(1{\text{ - X}}_{{\text{Mn}}}^{{\text{Gt}}} )] \hfill \\ \end{gathered} $$ The reformulated geothermometer is an improvement over existing biotite-garnet geothermometers because it reconciles the experimental data sets on Fe−Mg partitioning between the two phases and is based on updated activity-composition relationship in Fe−Mg−Ca garnet solid solutions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The development of Fe-Ti oxide assemblages in basic rocks from the Penninic series of the southern Venediger rea, Austria, during polyphase Alpine metamorphism has been studied. Textural and compositional relations indicate thorough reequilibration of the opaque mineral assemblages during late Barrovian metamorphism at essentially static conditions of lower amphibolite to greenschist facies. In contrast, silicate mineralogy of the preceeding blueschist to eclogite facies metamorphism might still be preserved to a large extent. Chemical adjustment of the Fe-Ti oxide minerals to decreasing P-T conditions is characterized by (1) formation of complex intergrowths of ilmenite and hematite solid solutions (〈550° C), (2) the decomposition of hemo-ilmenite 1 to ferrianilmenite2+magnetite+rutile and of ilmeno-hematite1 to titanhematite2+rutile±magnetite (〈450° C), and (3) low-grade oxidation of ferrianilmenite2 to magnetite+hematite-rutile intergrowths or hematite +rutile and of titanhematite2 to hematite-rutile intergrowths (≦400° C). Chemical equilibrium is suggested by the regular partitioning of Cr, V, Mg and Mn between coexisting hemo-ilmenite, ilmeno-hematite, and magnetite. The hematite-ilmenite miscibility gap has been delimited on the basis of the bulk compositions of the exsolved phases and the temperature estimates obtained from Fe-Ti oxide thermometry.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1617-7134
    Source: Springer Online Journal Archives 1860-2000
    Topics: Economics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1617-7134
    Source: Springer Online Journal Archives 1860-2000
    Topics: Economics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-08-31
    Description: In the deeply eroded Precambrian crust of South India and Sri Lanka, a series of spectacular exposures shows progressive development of coarse-grained charnockite through dehydration of amphibolite grade gneisses in different arrested stages. At Kabbaldurga, charnockitization of Archaean grey biotite-hornblende gneisses occurred about 2.5 Ga ago and evidently was induced by the influx of external carbonic fluids along a system of ductile shears and the foliation planes. The results of oxygen isotope thermometry and of geothermobarometry in adjacent areas indicate a P-T regime of 700 to 750 C and 5 to 7 kb. The decrease of water activity in the fluid infiltrated zones caused an almost complete breakdown of hornblende and biotite and the new growth of hypersthene. Detailed petrographic and geochemical studies revealed marked changes in mineralogy and chemistry from granodioritic to granitic which document the metasomatic nature of the process.
    Keywords: GEOPHYSICS
    Type: Lunar and Planetary Inst., Workshop on the Deep Continental Crust of South India; p 142-143
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-08-31
    Description: At Kottavattam, leucocratic granitic garnet-biotite gneisses (age less than 2 Ga) were partially transformed to coarse-grained charnockite along a system of conjugate fractures (N70E and N20W) and the foliation planes (N60 to 80W; dip 80 to 90 SW) about 550 m.y. ago. To examine and quantify changes in fabric, mineralogy, pore fluids and chemical composition associated with this process, large rock specimens showing gneiss-charnockite transition were studied in detail. The results of the present study corroborate the concept that charnockite formation at Kottavattam is an internally-generated phenomenon and was not triggered by the influx of carbonic fluids from a deep-seated source. It is suggested that charnockitization was caused by the following mechanism: (1) near-isothermal decompression during uplift of the gneiss complex led to an increase of the pore fluid pressure (P sub fluid greater than P sub lith) which - in a regime of anisotropic stress - triggered or at least promoted the development of conjugate fractures; (2) the simultaneous release of pore fluids from bursting fluid inclusions and their escape into the developing fracture system resulted in a drop of fluid pressure; and (3) the internal generation and buffering of the fluids and their, probably, limited migration in an entirely granitic rock system explains the absence of any significant metasomatic mass transfer.
    Keywords: GEOPHYSICS
    Type: Lunar and Planetary Inst., Workshop on the Deep Continental Crust of South India; p 140-141
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-08-31
    Description: Data were presented on pressure and temperature determinations from the Nilgiri Hills. About 70 samples were analyzed by probe and several calibrations of garnet-pyroxene thermometry and barometry applied. Most calibrations gave considerable scatter; however, a new calibration by Bhattacharya, Raith, Lal, and others, accounting for nonideality in both garnet and orthopyroxene, gave consistent results of 754 + or - 52 C and 9.2 + or - 0.7 kbar. On the regional scale, a pressure increase of 6.5 to 7 kbar in the SW to 11 kbar in the NE was related to block tilting. A continuous pressure gradient into the Moyar shear zone suggests that the zone is not a suture juxtaposing unrelated blocks.
    Keywords: GEOPHYSICS
    Type: Lunar and Planetary Inst., Workshop on the Deep Continental Crust of South India; p 138-139
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-08-31
    Description: The characterization of fluids involved in the gneiss-charnockite transformation in southern Kerala are discussed. Using a variety of techniques, including microthermometry, Raman laser probe analysis, and mass spectrometry, it was concluded that the CO2-rich, N2-bearing metamorphic fluids in these rocks were internally-derived rather than having been introduced by CO2-streaming.
    Keywords: GEOPHYSICS
    Type: Lunar and Planetary Inst., Workshop on the Deep Continental Crust of South India; p 81-83
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-08-31
    Description: The high-pressure charnockites (P = 8 to 9 Kb., T = 700 to 800 C CO2-rich fluid regime) of the Nilgiri hills show evidence of retrogression related to shear deformation within the Moyar and Bhavani shear belts. Two types of retrogression have been noticed: (1) retrogression along shear planes, and (2) retrogression along pegmatitic veins. Initial stages of retrogression results in the formation of irregular, 2 to 3 cm to one meter wide bleached zones with the removal of greasy grey color of charnockites. Minor structures which were earlier obscured in charnockites are clearly seen in bleached areas. In intensely shear areas, formation of highly fissile grey gneiss results often with the development of flaser and mylonitic structures. Fluid inclusion studies and geochemical investigations carried out for serial samples collected from charnockite to gneiss indicate following features: (1) there is a gradual decrease in density of CO2-rich fluids from 1.073 to 0.821 g/cu cm; (2) interestingly, in many sections of the gneisses studied, there is almost complete absence of fluid inclusions suggesting that they would have decrepitated (this may be due to large pressure difference (2 to 3 Kb.) created between the interior and exterior of the fluid inclusions); and (3) presence of mixed CO2-H2O inclusions were noticed.
    Keywords: GEOPHYSICS
    Type: Lunar and Planetary Inst., Workshop on the Deep Continental Crust of South India; p 170-172
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...