ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of fusion energy 1 (1981), S. 367-380 
    ISSN: 1572-9591
    Keywords: fusion reactors ; tandem mirror ; transport theory ; Monte Carlo method ; sampling ; mathematical models ; radiation transport ; neutron transport ; shielding ; magnets
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract A neutronics analysis using the Monte Carlo method is carried out for the end-plug penetration and magnet system of a tandem mirror fusion reactor. Detailed penetration and the magnets' three-dimensional configurations are modeled. A method of position dependent angular source biasing is developed to adequately sample the DT fusion source in the central cell region and obtain flux contributions at the penetration components. To assure cryogenic stability, the barrier cylindrical solenoid is identified as needing substantial shielding of about 1 m of a steel-lead-boron-carbide-water mixture. Heating rates there would require a thermal-hydraulic design similar to that in the central cell blanket region. The transition coils, however, need a minimal 0.2 m thickness shield. The leakage neutron flux at the direct converters is estimated at 1.3×1015 n/(m2·s), two orders of magnitude lower than that reported at the neutral beam injectors for tokamaks around 1017 n/(m2·s) for a 1 MW/m2 14 MeV neutron wall loading. This result is obtained through a coupling between the nuclear and plasma physics designs in which hydrogen ions rather than deuterium atoms are used for energy injection at the end plug, to avoid creating a neutron source there. This lower and controllable radiation leakage problem is perceived as a potential major advantage of tandem mirrors compared to tokamaks and laser reactor systems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of fusion energy 1 (1981), S. 285-298 
    ISSN: 1572-9591
    Keywords: Fusion reactors ; hybrid reactors ; Monte Carlo method ; three-dimensional calculations ; breeding ratio ; breeding blankets
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Optimization of fissile and fusile production in the SOLASE-H laser-fusion fissile-enrichment fuel-factory blanket is carried out. The objective is maximizing fissile breeding with the constraints of maintaining self-sufficiency in tritium production, and realistically accounting in the modeling for structural and coolant compositions and configurations imposed by the thermal-hydraulic and mechanical designs. The effect of radial and axial blanket zone thicknesses on fusile and fissile breeding is studied using a procedure which modifies the zones' effective optical thicknesses, rather than the actual three-dimensional geometrical configurations. A tritium yield per source neutron of 1.08 and a Th (n, γ) reaction yield per source neutron of 0.43 can be obtained in such a concept, where ThO2 Zircaloy-clad fuel assemblies for light water reactors (LWRs) are enriched in the233U isotope by irradiating them in a lead flux trap. This corresponds to 0.77 kg/[MW(th)-year] of fissile fuel production, and 1.94 years of irradiation in the fusion reactor to attain an average 3 w/o fissile enrichment in the fuel assemblies. For a once-through LWR cycle, a support ratio of 2–3 is estimated. However, with fuel recycling, more attractive support ratios of 4–6 may be attainable for a conversion ratio of 0.55, and of 5–8 for a conversion ratio of 0.70. These estimates are lower than those reported, around 20, for related designs.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1981-10-01
    Print ISSN: 0164-0313
    Electronic ISSN: 1572-9591
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1981-07-01
    Print ISSN: 0164-0313
    Electronic ISSN: 1572-9591
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...