ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-05-05
    Description: We have utilized spatially resolved high resolution electron energy loss spectroscopy to quantify the relative percentage of ferromagnetic order in the core and the surface regions of CuCr 2 S 4 nanoparticles with nanocube and nanocluster morphology. The organic capping layer is found to play a significant role in restoring magnetic order at the surface. The technique is based on recording the fine features of the Cr L 3 absorption edge and matching them with the theoretical spectra. The nanoscale probing technique we have developed is quite versatile and can be extended to understand magnetic ordering in a number of nanodimensional magnetic materials.
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: Journal of Applied Meteorology and Climatology, Ahead of Print. 〈br/〉
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-06-11
    Description: Article Atmospheric circulation controls the mass and energy balance of the Greenland ice sheet, yet the exact dynamics remain unknown. Here, the authors show that record conditions over Greenland during the summer of 2015 were associated with the formation and persistency of an Arctic cut-off high. Nature Communications doi: 10.1038/ncomms11723 Authors: M. Tedesco, T. Mote, X. Fettweis, E. Hanna, J. Jeyaratnam, J. F. Booth, R. Datta, K. Briggs
    Electronic ISSN: 2041-1723
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-06-01
    Description: Currently several low-frequency experiments are being planned to study the nature of the first stars using the redshifted 21-cm signal from the cosmic dawn and Epoch of Reionization. Using a one-dimensional radiative transfer code, we model the 21-cm signal pattern around the early sources for different source models, i.e. the metal-free Population III (PopIII) stars, primordial galaxies consisting of Population II (PopII) stars, mini-QSOs and high-mass X-ray binaries (HMXBs). We investigate the detectability of these sources by comparing the 21-cm visibility signal with the system noise appropriate for a telescope like the SKA1-low. Upon integrating the visibility around a typical source over all baselines and over a frequency interval of 16 MHz, we find that it will be possible to make a ~9 detection of the isolated sources like PopII galaxies, mini-QSOs and HMXBs at z ~ 15 with the SKA1-low in 1000 h. The exact value of the signal-to-noise ratio (SNR) will depend on the source properties, in particular on the mass and age of the source and the escape fraction of ionizing photons. The predicted SNR decreases with increasing redshift. We provide simple scaling laws to estimate the SNR for different values of the parameters which characterize the source and the surrounding medium. We also argue that it will be possible to achieve an SNR ~9 even in the presence of the astrophysical foregrounds by subtracting out the frequency-independent component of the observed signal. These calculations will be useful in planning 21-cm observations to detect the first sources.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-04-11
    Description: Author(s): B. Loukya, D. S. Negi, K. Dileep, N. Pachauri, A. Gupta, and R. Datta Electron magnetic chiral dichroism (EMCD) in a transmission electron microscope is an element-specific magnetic characterization technique and is extremely powerful for understanding magnetism of materials at the nanoscale. However, quantitative EMCD remains a challenge. In the present paper, we hav... [Phys. Rev. B 91, 134412] Published Fri Apr 10, 2015
    Keywords: Magnetism
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2013-02-24
    Description: This paper considers benchmarking issues in the context of small area estimation. We find optimal estimators within the class of benchmarked linear estimators under linear constraints. This extends existing results for external and internal benchmarking, and also links the two. Necessary and sufficient conditions for self-benchmarking are found for an augmented model. Most results of this paper are found using ideas of orthogonal projection
    Print ISSN: 0006-3444
    Electronic ISSN: 1464-3510
    Topics: Biology , Mathematics , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-12-10
    Description: We report on the observation of Co vacancy (V Co ) induced charge ordering and ferromagnetism in CoO epitaxial thin film. The ordering is associated with the coexistence of commensurate, incommensurate, and discommensurate electronic phases. Density functional theory calculation indicates the origin of ordering in Co atoms undergoing high spin to low spin transition immediately surrounding the V Co(16.6 at. %) . Electron magnetic chiral dichroism experiment confirms the ferromagnetic signal at uncompensated Co spins. Such a native defects induced coexistence of different electronic phases at room temperature in a simple compound CoO is unique and adds to the richness of the field with the possibility of practical device application.
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-05-25
    Description: Many current treatments for the reclamation of contaminated water sources are chemical-intensive, energy-intensive, and/or require posttreatment due to unwanted by-product formation. We demonstrate that through the integration of nanostructured materials, enzymatic catalysis, and iron-catalyzed free radical reactions within pore-functionalized synthetic membrane platforms, we are able to conduct environmentally important oxidative reactions for toxic organic degradation and detoxification from water without the addition of expensive or harmful chemicals. In contrast to conventional, passive membrane technologies, our approach utilizes two independently controlled, nanostructured membranes in a stacked configuration for the generation of the necessary oxidants. These include biocatalytic and organic/inorganic (polymer/iron) nanocomposite membranes. The bioactive (top) membrane contains an electrostatically immobilized enzyme for the catalytic production of one of the main reactants, hydrogen peroxide (H2O2), from glucose. The bottom membrane contains either immobilized iron ions or ferrihydrite/iron oxide nanoparticles for the decomposition of hydrogen peroxide to form powerful free radical oxidants. By permeating (at low pressure) a solution containing a model organic contaminant, such as trichlorophenol, with glucose in oxygen-saturated water through the membrane stack, significant contaminant degradation was realized. To illustrate the effectiveness of this membrane platform in real-world applications, membrane-immobilized ferrihydrite/iron oxide nanoparticles were reacted with hydrogen peroxide to form free radicals for the degradation of a chlorinated organic contaminant in actual groundwater. Although we establish the development of these nanostructured materials for environmental applications, the practical and methodological advances demonstrated here permit the extension of their use to applications including disinfection and/or virus inactivation.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-09-10
    Description: Nanoscale optical band gap variations in epitaxial thin films of two different spinel ferrites, i.e., NiFe 2 O 4 (NFO) and CoFe 2 O 4 (CFO), have been investigated by spatially resolved high resolution electron energy loss spectroscopy. Experimentally, both NFO and CFO show indirect/direct band gaps around 1.52 eV/2.74 and 2.3 eV, and 1.3 eV/2.31 eV, respectively, for the ideal inverse spinel configuration with considerable standard deviation in the band gap values for CFO due to various levels of deviation from the ideal inverse spinel structure. Direct probing of the regions in both the systems with tetrahedral A site cation vacancy, which is distinct from the ideal inverse spinel configuration, shows significantly smaller band gap values. The experimental results are supported by the density functional theory based modified Becke-Johnson exchange correlation potential calculated band gap values for the different cation configurations.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-01-07
    Description: The 21 cm brightness temperature T b fluctuations from reionization promise to provide information on the physical processes during that epoch. We present a formalism for generating the T b distribution using dark matter simulations and a 1D radiative transfer code. Our analysis is able to account for the spin temperature T S fluctuations arising from inhomogeneous X-ray heating and Lyα coupling during cosmic dawn. The T b power spectrum amplitude at large scales ( k  ~ 0.1 Mpc –1 ) is maximum when ~10 per cent of the gas (by volume) is heated above the cosmic microwave background temperature. The power spectrum shows a ‘bump’-like feature during cosmic dawn and its location measures the typical sizes of heated regions. We find that the effect of peculiar velocities on the power spectrum is negligible at large scales for most part of the reionization history. During early stages (when the volume averaged ionization fraction  0.2) this is because the signal is dominated by fluctuations in T S . For reionization models that are solely driven by stars within high-mass ( 10 9 M ) haloes, the peculiar velocity effects are prominent only at smaller scales ( k   0.4 Mpc –1 ) where patchiness in the neutral hydrogen density dominates the signal. The conclusions are unaffected by changes in the amplitude or steepness in the X-ray spectra of the sources.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...