All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • 1
    Publication Date: 2018-01-02
    Description: Energies, Vol. 11, Pages 66: Rotor Position Self-Sensing of SRM Using PSO-RVM Energies doi: 10.3390/en11010066 Authors: Qianwen Xiang Ye Yuan Yanjun Yu Kunhua Chen The motors’ flux-linkage, current and angle obtained from the system with sensors were chosen as the sample data, and the estimation model of rotor position based on relevance vector machine (RVM) was built by training the sample data. The kernel function parameter in RVM model was optimized by the particle swarm algorithm in order to increase the fitting precision and generalization ability of RVM model. It achieved higher prediction accuracy with staying at the same on-line testing time as the RVM. And because the short on-line computation, the motor can operate at 3000 r/min in sensorless control with particle swarm optimization-relevance vector machine (PSO-RVM), which is higher than support vector machine (SVM) and neural network (NN). By simulation and experiment on the test motor, it is verified that the proposed estimation model can obtain the angle of full electrical period accurately under low speed and high speed operations in current chopped control and angle position control, which has satisfactory estimation precision.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...