ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    Publication Date: 2019-07-27
    Description: Leaders from NASA's Space Launch System (SLS) will participate in a panel discussing the progress made on the program's propulsion systems. The SLS will be the nation's next human-rated heavy-lift vehicle for new missions beyond Earth's orbit. With a first launch slated for 2017, the SLS Program is turning plans into progress, with the initial rocket being built in the U.S.A. today, engaging the aerospace workforce and infrastructure. Starting with an overview of the SLS mission and programmatic status, the discussion will then delve into progress on each of the primary SLS propulsion elements, including the boosters, core stage engines, upper stage engines, and stage hardware. Included will be a discussion of the 5-segment solid rocket motors (ATK), which are derived from Space Shuttle and Ares developments, as well as the RS-25 core stage engines from the Space Shuttle inventory and the J- 2X upper stage engine now in testing (Pratt and Whitney Rocketdyne). The panel will respond to audience questions about this important national capability for human and scientific space exploration missions.
    Keywords: Spacecraft Propulsion and Power
    Type: M12-1861 , M12-1965
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-27
    Description: In accordance with the U.S. Vision for Space Exploration, NASA has been tasked to send human beings to the moon, Mars, and beyond. The Firs t Stage of NASA's new Ares I Crew Launch Vehicle, which will loft the Orion Crew Exploration Vehicle into low-Earth orbit early next decade, will consist of a Space Shuttle-derived five-segment Reusable Solid Rocket Booster (RSRB); a pair of similar RSRBs also will be used on the Ares V cargo launch vehicle. This paper will discuss the basis for choosing the First Stage propulsion system; describe the activities the Exploration Launch Projects (ELP) Office is conducting to develop the First Stage; and offer a preview of future development activities including the Ares I-X test flight planned for 2009.
    Keywords: Launch Vehicles and Launch Operations
    Type: AIAA Space 2007; 18-20 Sept. 2007; Long Beach, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-19
    Description: NASA's Journey to Mars has begun. Indicative of that challenge, this will be a multi-decadal effort requiring the development of technology, operational capability, and experience. The first steps are under way with more than 15 years of continuous human operations aboard the International Space Station (ISS) and development of commercial cargo and crew transportation capabilities. NASA is making progress on the transportation required for deep space exploration - the Orion crew spacecraft and the Space Launch System (SLS) heavy-lift rocket that will launch Orion and large components such as in-space stages, habitat modules, landers, and other hardware necessary for deep-space operations. SLS is a key enabling capability and is designed to evolve with mission requirements. The initial configuration of SLS - Block 1 - will be capable of launching more than 70 metric tons (t) of payload into low Earth orbit, greater mass than any other launch vehicle in existence. By enhancing the propulsion elements and larger payload fairings, future SLS variants will launch 130 t into space, an unprecedented capability that simplifies hardware design and in-space operations, reduces travel times, and enhances the odds of mission success. SLS will be powered by four liquid fuel RS-25 engines and two solid propellant five-segment boosters, both based on space shuttle technologies. This paper will focus on development of the booster, which will provide more than 75 percent of total vehicle thrust at liftoff. Each booster is more than 17 stories tall, 3.6 meters (m) in diameter and weighs 725,000 kilograms (kg). While the SLS booster appears similar to the shuttle booster, it incorporates several changes. The additional propellant segment provides additional booster performance. Parachutes and other hardware associated with recovery operations have been deleted and the booster designated as expendable for affordability reasons. The new motor incorporates new avionics, new propellant grain, asbestos-free case insulation, a redesigned nozzle, streamlined manufacturing processes, and new inspection techniques. New materials and processes provide improved performance, safety, and affordability but also have led to challenges for the government/industry development team. The team completed its first full-size qualification motor test firing in early 2015. The second is scheduled for mid-2016. This paper will discuss booster accomplishments to date, as well as challenges and milestones ahead.
    Keywords: Spacecraft Design, Testing and Performance; Spacecraft Propulsion and Power
    Type: M16-5039 , AAAF Space Propulsion 2016; May 02, 2016 - May 06, 2016; Roma; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-19
    Description: The National Aeronautics and Space Administration (NASA) Ares Projects Office (APO) is continuing to make progress toward the final design of the first stage propulsion system for the Ares I crew launch vehicle and the Ares V cargo launch vehicle. Ares I and Ares V will provide the space launch capabilities needed to fulfill NASA' s exploration strategy of sending human beings to the Moon, Mars, and beyond. As primary propulsion for the Ares launch vehicles, the Space Shuttle-derived Reusable Solid Rocket Motor (RSRM) is one of the first and most important components to be tested. The first flight of Ares I, called Ares I-X, will occur in April 2009, with booster integration to begin at Kennedy Space Center (KSC) by autumn 2008. The Ares I-X flight will use a combination of flight and simulation hardware to obtain data on controlling the long and narrow crew launch vehicle configuration. The test will use a four-segment RSRM from the Shuttle inventory and a fifth spacer segment to simulate the size and weight of the operational five-segment motor to be used on later flights. The upper stage, Orion crew exploration vehicle, and launch abort system will all be replaced with simulator hardware. Manufacturing work has begun on the spacer segment, as well as the new forward hardware for the booster. Atlas V avionics will be adapted to control Ares I-X' s first stage. That hardware is undergoing hardware-in-the-loop testing in a contractor-provided systems integration laboratory (SIL); a critical design review (CDR) was completed in December 2007. Drogue and main parachute drop tests have also been conducted successfully at Yuma Proving Grounds, allowing the First Stage team to begin fabricating parachutes for Ares I-X. The Ares I-X flight test will be the first flight test for the parachutes. A series of preliminary design technical interchange meetings is being conducted prior to the Ares I-X CDR in January 2007 to ensure readiness for the flight. Much of the First Stage activity in 2007 has focused on a series of preliminary design (PDR) activities associated with each booster subsystem. These events will culminate in a formal preliminary design review in 2008, where subsystems and component specifications will be developed and associated analyses and drawings will be evaluated for technical adequacy. The first stage also has been undergoing a series of trade studies to determine means for upgrading booster performance and reducing operational costs. Performance improvement studies have included changing from polybutadiene acrylonitrile (PBAN) propellant to hydroxyl-terminated polybutadiene (HTPB); replacing aluminum with composite motor casings; and optimizing or upgrading the propellant grain and nozzle structures. Some or all of these changes could result in a block upgrade to the Ares I first stage, after becoming the standard configuration for the Ares V. The cost reduction studies included a change from reusable or recoverable boosters to completely expendable boosters; changing from hydrazine-powered to more environmentally friendly electrohydrostatic actuators (EHAs) on the thrust vector control (TVC) system; and changing the location of the separation plane to reduce the likelihood of recontact upon booster separation. The expendability trade study resulted in a decision to keep the recoverable boosters, as the new hardware costs significantly outweighed the potential operational cost savings due to reduced ground operations. Likewise, due to cost considerations, the team continued using existing hydrazine-powered actuators for the TVC system. The separation plane location for Ares I is still being studied, with results to be announced in 2008. In short, the Ares launch vehicles' first stage is building upon NASA's close familiarity with this Shuttle-derived system, while continuing to seek out improvements for long-term exploration.
    Keywords: Spacecraft Propulsion and Power
    Type: M09-2048 , AIAA Space 2008; Sep 09, 2008 - Sep 11, 2008; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Propulsion and Power
    Type: M16-5247 , Space Propulsion 2016; May 02, 2016 - May 06, 2016; Rome; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: NASA's Journey to Mars has begun. Indicative of that challenge, this will be a multi-decadal effort requiring the development of technology, operational capability, and experience. The first steps are underway with more than 15 years of continuous human operations aboard the International Space Station (ISS) and development of commercial cargo and crew transportation capabilities. NASA is making progress on the transportation required for deep space exploration - the Orion crew spacecraft and the Space Launch System (SLS) heavy-lift rocket that will launch Orion and large components such as in-space stages, habitat modules, landers, and other hardware necessary for deep-space operations. SLS is a key enabling capability and is designed to evolve with mission requirements. The initial configuration of SLS - Block 1 - will be capable of launching more than 70 metric tons (t) of payload into low Earth orbit, greater mass than any other launch vehicle in existence. By enhancing the propulsion elements and larger payload fairings, future SLS variants will launch 130 t into space, an unprecedented capability that simplifies hardware design and in-space operations, reduces travel times, and enhances two solid propellant five-segment boosters, both based on space shuttle technologies. This paper will focus on development of the booster, which will provide more than 75 percent of total vehicle thrust at liftoff. Each booster is more than 17 stories tall, 3.6 meters (m) in diameter and weighs 725,000 kilograms (kg). While the SLS booster appears similar to the shuttle booster, it incorporates several changes. The additional propellant segment provides additional booster performance. Parachutes and other hardware associated with recovery operations have been deleted and the booster designated as expendable for affordability reasons. The new motor incorporates new avionics, new propellant grain, asbestos-free case insulation, a redesigned nozzle, streamlined manufacturing processes, and new inspection techniques. New materials and processes provide improved performance, safety, and affordability but also have led to challenges for the government/industry development team. The team completed its first full-size qualification motor test firing in early 2015. The second is scheduled for mid-2016. This paper will discuss booster accomplishments to date, as well as challenges and milestones ahead.
    Keywords: Spacecraft Propulsion and Power
    Type: M16-5241 , Space Propulsion 2016; May 02, 2016 - May 06, 2016; Rome; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: In support of the National Aeronautics and Space Administration (NASA), Marshall Space Flight Center (MSFC) is developing a new, more powerful solid rocket motor for space launch applications. To minimize technical risks and development costs, NASA chose to use the Space Shuttle s solid rocket boosters as a starting point in the design and development. The new, five segment motor provides a greater total impulse with improved, more environmentally friendly materials. To meet the mass and trajectory requirements, the motor incorporates substantial design and system upgrades, including new propellant grain geometry with an additional segment, new internal insulation system, and a state-of-the art avionics system. Significant progress has been made in the design, development and testing of the propulsion, and avionics systems. To date, three development motors (one each in 2009, 2010, and 2011) have been successfully static tested by NASA and ATK s Launch Systems Group in Promontory, UT. These development motor tests have validated much of the engineering with substantial data collected, analyzed, and utilized to improve the design. This paper provides an overview of the development progress on the first stage propulsion system.
    Keywords: Spacecraft Propulsion and Power
    Type: M11-1085 , M12-1701 , M12-1717 , Space Propulsion 2012; May 07, 2012 - May 10, 2012; Bordeaux; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: In November 2005, NASA created the Constellation Program to develop an entirely new fleet of spacecraft to include the Ares I Crew Launch Vehicle and Ares V Cargo Launch vehicles. This mission architecture included the Orion capsule (which would be used to transport astronauts to low-Earth orbit and beyond), the Altair lunar lander, and an Earth departure stage. The Ares First Stage Team has made significant progress on the design of a propulsion system to meet the objectives of the Constellation Program. Work on a first stage element propulsion system capable of lofting a new fleet of spacecraft is well underway. To minimize technical risks and development costs, the Solid Rocket Boosters (SRBs) of Shuttle served as a starting point in the design of a new motor that would meet the requirements of those new vehicles. This new propulsive element will provide greater total impulse utilizing a fifth segment to loft a safer, more powerful fleet of space flight vehicles. Performance requirements, basic architecture, and obsolescence issues were all factors in determining the new first stage element design and configuration. Early efforts focused on creating designs that would be capable of supporting the requisite loads and environments. While the motor casings are Shuttle legacy, because of Ares I s unique in-line configuration, the first stage will require entirely new forward structures (forward skirt, forward skirt extension, aeroshell, and frustum) and a modified systems tunnel. The use of composites facilitated a change in the geometry, which in turn afforded the ability to focus strength where it was needed without additional mass. The Ares First Stage rocket motor casting tooling was designed and built to achieve a propellant grain geometry that produces the specific required ballistic profile. The new propellant formulation is a polybutadiene acrylonitrile (PBAN) copolymer, which has been modified to attain the desired burn rate and retain adequate tailoring capability.
    Keywords: Launch Vehicles and Launch Operations
    Type: M10-0105 , 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit; Jul 25, 2010 - Jul 28, 2010; Nashville, TN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: With a mission to continue to support the goals of the International Space Station (ISS) and explore beyond Earth orbit, the United States National Aeronautics and Space Administration (NASA) is in the process of launching an entirely new space exploration initiative, the Constellation Program. Even as the Space Shuttle moves toward its final voyage, Constellation is building from nearly half a century of NASA spaceflight experience, and technological advances, including the legacy of Shuttle and earlier programs such as Apollo and the Saturn V rocket. Out of Constellation will come two new launch vehicles: the Ares I crew launch vehicle and the Ares V cargo launch vehicle. With the initial goal to seamlessly continue where the Space Shuttle leaves off, Ares will firstly service the Space Station. Ultimately, however, the intent is to push further: to establish an outpost on the Moon, and then to explore other destinations. With significant experience and a strong foundation in aerospace, NASA is now progressing toward the final design of the First Stage propulsion system for the Ares I. The new launch vehicle design will considerably increase safety and reliability, reduce the cost of accessing space, and provide a viable growth path for human space exploration. To achieve these goals, NASA is taking advantage of Space Shuttle hardware, safety, reliability, and experience. With efforts to minimize technical risk and life-cycle costs, the First Stage office is again pulling from NASA s strong legacy in aerospace exploration and development, most specifically the Space Shuttle Program. Trade studies have been conducted to evaluate life-cycle costs, expendability, and risk reduction. While many first stage features have already been determined, these trade studies are helping to resolve the operational requisites and configuration of the first stage element. This paper first presents an overview of the Ares missions and the genesis of the Ares vehicle design. It then looks at one of the most important trade studies to date, the "Ares I First Stage Expendability Trade Study." The purpose of this study was to determine the utility of flying the first stage as an expendable booster rather than making it reusable. To lower the study complexity, four operational scenarios (or cases) were defined. This assessment then included an evaluation of the development, reliability, performance, and transition impacts associated with an expendable solution. This paper looks at these scenarios from the perspectives of cost, reliability, and performance.
    Keywords: Spacecraft Propulsion and Power
    Type: Joint Propulsion Conference; Jul 20, 2008 - Jul 23, 2008; Hartford, CT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...