ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2009-09-01
    Description: Monthly and daily products of the Global Precipitation Climatology Project (GPCP) are evaluated through a comparison with Finnish Meteorological Institute (FMI) gauge observations for the period January 1995–December 2007 to assess the quality of the GPCP estimates at high latitudes. At the monthly scale both the final GPCP combination satellite–gauge (SG) product is evaluated, along with the satellite-only multisatellite (MS) product. The GPCP daily product is scaled to sum to the monthly product, so it implicitly contains monthly-scale gauge influence, although it contains no daily gauge information. As expected, the monthly SG product agrees well with the FMI observations because of the inclusion of limited gauge information. Over the entire analysis period the SG estimates are biased low by 6% when the same wind-loss adjustment is applied to the FMI gauges as is used in the SG analysis. The interannual anomaly correlation is about 0.9. The satellite-only MS product has a lesser, but still reasonably good, interannual correlation (∼0.6) while retaining a similar bias due to the use of a climatological bias adjustment. These results indicate the value of using even a few gauges in the analysis and provide an estimate of the correlation error to be expected in the SG analysis over ocean and remote land areas where gauges are absent. The daily GPCP precipitation estimates compare reasonably well at the 1° latitude × 2° longitude scale with the FMI gauge observations in the summer with a correlation of 0.55, but less so in the winter with a correlation of 0.45. Correlations increase somewhat when larger areas and multiday periods are analyzed. The day-to-day occurrence of precipitation is captured fairly well by the GPCP estimates, but the corresponding precipitation event amounts tend to show wide variability. The results of this study indicate that the GPCP monthly and daily fields are useful for meteorological and hydrological studies but that there is significant room for improvement of satellite retrievals and analysis techniques in this region. It is hoped that the research here provides a framework for future high-latitude assessment efforts such as those that will be necessary for the upcoming satellite-based Global Precipitation Measurement (GPM) mission.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2005-07-01
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-03-01
    Description: The Finnish Meteorological Institute and Vaisala have established a mesoscale weather observational network in southern Finland. The Helsinki Testbed is an open research and quasi-operational program designed to provide new information on observing systems and strategies, mesoscale weather phenomena, urban and regional modeling, and end-user applications in a high-latitude (~60°N) coastal environment. The Helsinki Testbed and related programs feature several components: observing system design and implementation, small-scale data assimilation, nowcasting and short-range numerical weather prediction, public service, and commercial development of applications. Specifically, the observing instrumentation focuses on meteorological observations of meso-gamma-scale phenomena that are often too small to be detected adequately by traditional observing networks. In particular, more than 40 telecommunication masts (40 that are 120 m high and one that is 300 m high) are instrumented at multiple heights. Other instrumentation includes one operational radio sounding (and occasional supplemental ones), ceilometers, aerosol-particle and trace-gas instrumentation on an urban flux-measurement tower, a wind profiler, and four Doppler weather radars, three of which have dual-polarimetric capability. The Helsinki Testbed supports the development and testing of new observational instruments, systems, and methods during coordinated field experiments, such as the NASA Global Precipitation Measurement (GPM). Currently, the Helsinki Testbed Web site typically receives more than 450,000 weekly visits, and more than 600 users have registered to use historical data records. This article discusses the three different phases of development and associated activities of the Helsinki Testbed from network development and observational campaigns, development of the local analysis and prediction system, and testing of applications for commercial services. Finally, the Helsinki Testbed is evaluated based on previously published criteria, indicating both successes and shortcomings of this approach.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-06
    Description: It is very important to know how much rain and snow falls around the world for uses that range from crop forecasting to disaster response, drought monitoring to flood forecasting, and weather analysis to climate research. Precipitation is usually measured with rain gauges, but rain gauges don t exist in areas that are sparsely populated, which tends to be a good portion of the globe. To overcome this, meteorologists use satellite data to estimate global precipitation. However, it is difficult to estimate rain and especially snow in cold climates using most current satellites. The satellite sensors are often "confused" by a snowy or frozen surface and therefore cannot distinguish precipitation. One commonly used satellite-based precipitation data set, the Global Precipitation Climatology Project (GPCP) data, overcomes this frozen-surface problem through the innovative use of two sources of satellite data, the Television Infrared Observation Satellite Operational Vertical Sounder (TOVS) and the Atmospheric Infrared Sounder (AIRS). Though the GPCP estimates are generally considered a very reliable source of precipitation, it has been difficult to assess the quality of these estimates in cold climates due to the lack of gauges. Recently, the Finnish Meteorological Institute (FMI) has provided a 12-year span of high-quality daily rain gauge observations, covering all of Finland, that can be used to compare with the GPCP data to determine how well the satellites estimate cold-climate precipitation. Comparison of the monthly GPCP satellite-based estimates and the FMI gauge observations shows remarkably good agreement, with the GPCP estimates being 6% lower in the amount of precipitation than the FMI observations. Furthermore, the month-to-month correlation between the GPCP and FMI is very high at 0.95 (1.0 is perfect). The daily GPCP estimates replicate the FMI daily occurrences of precipitation with a correlation of 0.55 in the summer and 0.45 in the winter. The winter result indicates the GPCP estimates have skill in "seeing" snowfall, which is the most challenging situation. Thus, the GPCP data set successfully overcomes a current limitation in satellite meteorology, namely the estimation of cold-climate precipitation. The success of the GPCP data set bodes well for future missions, whose instrumentation is specifically designed to give even more information for addressing cold-climate precipitation.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...