ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2019
    Description: 〈span〉〈div〉SUMMARY〈/div〉The Greater Geneva Basin is one of the key targets for geothermal exploration in Switzerland. Until recently, information about the subsurface structure of this region was mostly composed of well-logs, seismic reflection lines, and gravity measurements. As part of the current effort to further reduce subsurface uncertainty, and to test passive seismic methods for exploration purposes, we performed an ambient-noise tomography of the Greater Geneva Basin. We used ∼1.5 yr of continuous data collected on a temporary seismic network composed of 28 broad-band stations deployed within and around the basin. From the vertical component of the continuous noise recordings, we computed cross-correlation functions and retrieved Rayleigh-wave group-velocity dispersion curves. We then inverted the dispersion curves to obtain 2-D group-velocity maps and proceeded to a subsequent inversion step to retrieve a large-scale 3-D shear-wave velocity model of the basin. We discuss the retrieved features of the basin in the light of local geology, previously acquired geophysical data sets, and ongoing geothermal exploration. The Greater Geneva Basin is an ideal natural laboratory to test innovative geothermal exploration methods because of the substantial geophysical data sets available for comparison. While we point out the limits of ambient-noise exploration with sparse networks and current methodology, we also discuss possible ways to develop ambient-noise tomography as an affordable and efficient subsurface exploration method.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: 〈span〉〈div〉Summary〈/div〉The Greater Geneva Basin is one of the key targets for geothermal exploration in Switzerland. Until recently, information about the subsurface structure of this region was mostly composed of well-logs, seismic reflection lines, and gravity measurements. As part of the current effort to further reduce subsurface uncertainty, and to test passive seismic methods for exploration purposes, we performed an ambient-noise tomography of the Greater Geneva Basin. We used ∼1.5 years of continuous data collected on a temporary seismic network composed of 28 broadband stations deployed within and around the basin. From the vertical component of the continuous noise recordings, we computed cross-correlation functions and retrieved Rayleigh-wave group-velocity dispersion curves. We then inverted the dispersion curves to obtain 2D group-velocity maps and proceeded to a subsequent inversion step to retrieve a large-scale 3D shear-wave velocity model of the basin. We discuss the retrieved features of the basin in the light of local geology, previously acquired geophysical datasets, and ongoing geothermal exploration. The Greater Geneva Basin is an ideal natural laboratory to test innovative geothermal exploration methods because of the substantial geophysical datasets available for comparison. While we point out the limits of ambient-noise exploration with sparse networks and current methodology, we also discuss possible ways to develop ambient-noise tomography as an affordable and efficient subsurface exploration method.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...