ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 10 (1992), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The P–T paths for metamorphic complexes from the Precambrian shields and fold belts of different ages may result from advection, i.e. one-cycle convective processes in the lithosphere. This conclusion has been exemplified by the metamorphic evolution of several well-known complexes, for which an advective model can be successfully applied. Numerical simulations of the above processes in terms of Newtonian rheology by using a two-dimensional finite element program have been conducted.Two representative models for intracontinental gravitational ordering initiated presumably by mantle activity are considered: (i) a thermally activated multi-layered rhythmic sequence and (ii) huge rising diapiars causing circulation, in which crustal lithologies underwent high-P metamorphism (above 10–15 kbar) and subsequent ascent toward the Earth's surface.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract Precambrian granulites of the Aldan shield in southern Yakutia, USSR, form a massif of 200,000 km2 bounded by younger fold-belts to the south, west and east. The massif consists of several blocks that reflect a primary heterogeneity of composition and differences in structural and thermodynamic evolution of different parts of the area. According to structural and petrological data the massif can be divided into two megablocks: eastern Aldan and western Aldan. They are separated by a narrow meridional fold-belt. Structural evolution of this central zone was determined by the geodynamics of the mega-blocks and was completed in the late Archaean. Towards the south, this central zone is ‘transformed’into the relatively small Sutam block adjoining the Stanovoy fold-belt that bounds the Aldan shield on the south. The Sutam block is separated from the other structural units of the Aldan shield by a system of north trending grabens filled by post-Archaean sediments.The Aldan shield is composed of Archaean high-grade granulites, while the Stanovoy fold-belt, to the south, consists of highly foliated Proterozoic rocks metamorphosed under relatively lower-grade conditions. However, relics of the granulites are mapped within the fold-belt. They contain high-grade assemblages (e.g. Opx + Sil + Qz, Sap + Qz, Opx + Gr + Sil, etc.). One of the relics, the Tokskii block, which is only slightly touched by diaphthoresis, is located in the southeastern part of the Stanovoy fold-belt. Metamorphic conditions of the Tokskii block are compared with those of the Sutam block and a similar evolution of the units is revealed.Mineral assemblages and mineral compositions do not vary within each unit, but they change in a north-south direction. The Opx + Sil + Qz assemblage has been found only in Sutam and Tok, but not in eastern Aldan and western Aldan. The Sap + Qz assemblage has been found in the Tokskii block but has not yet been found in the Sutam block. The pyrope content in garnets, from metapelites of both blocks, is significantly higher than that from the Aldan (eastern and western blocks) rocks to the north. The most important assemblages from different units of the Aldan shield have been studied using the electron microprobe in order to unravel the metamorphic evolution of the granulites and thus to deduce the thermodynamic regime of this evolution. A geodynamic model for the Aldan shield is discussed in terms of Archaean island arc development.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of metamorphic geology 23 (2005), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Metapelites, migmatites and granites from the c. 2 Ga Mahalapye Complex have been studied for determining the P–T–fluid influence on mineral assemblages and local equilibrium compositions in the rocks from the extreme southwestern part of the Central Zone of the Limpopo high-grade terrane in Botswana. It was found that fluid infiltration played a leading role in the formation of the rocks. This conclusion is based on both well-developed textures inferred to record metasomatic reactions, such as Bt ⇒ And + Qtz + (K2O) and Bt ± Qtz ⇒ Sil + Kfs + Ms ± Pl, and zonation of Ms | Bt + Qtz | And + Qtz and Grt | Crd | Pl | Kfs + Qtz reflecting a perfect mobility (Korzhinskii terminology) of some chemical components. The conclusion is also supported by the results of a fluid inclusion study. CO2 and H2O (〈inlineGraphic alt="inline image" href="urn:x-wiley:02634929:JMG579:JMG_579_mu1" location="equation/JMG_579_mu1.gif"/〉 = 0.6) are the major components of the fluid. The fluid has been trapped synchronously along the retrograde P–T path. The P–T path was derived using mineral thermobarometry and a combination of mineral thermometry and fluid inclusion density data. The Mahalapye Complex experienced low-pressure granulite facies metamorphism with a retrograde evolution from 770 °C and 5.5 kbar to 560 °C and 2 kbar, presumably at c. 2 Ga.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of metamorphic geology 19 (2001), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The Southern Marginal Zone of the late Archean Limpopo Belt of southern Africa is an example of a high-grade gneiss terrane in which both upper and lower crustal deformational processes can be studied. This marginal zone consists of large thrust sheets of complexly folded low-strain gneisses, bound by an imbricate system of kilometre-wide deep crustal shear zones characterized by the presence of high-strain gneisses (‘primary straight gneisses’). These shear zones developed during the decompression stage of this high-grade terrane. Low- and high-strain gneisses both contain similar reaction textures that formed under different kinematic conditions during decompression. Evidence for the early M1/D1 metamorphic phase (〉 2690 Ma) is rarely preserved in low-strain gneisses as a uniform orientation of relict Al-rich orthopyroxene in the matrix and quartz and plagioclase inclusions in the cores of early (M1) Mg-rich garnet porphyroblasts. This rare fabric formed at 〉 820 °C and 〉 7.5 kbar. The retrograde M2/D2 metamorphic fabric (2630–2670 Ma) is well developed in high-strain gneisses from deep crustal shear zones and is microscopically recognized by the presence of reaction textures that formed synkinematically during shear deformation: M2 sigmoid-shaped reaction textures with oriented cordierite–orthopyroxene symplectites formed after the early M1 Mg-rich garnet porphyroblasts, and syn-decompression M2 pencil-shaped garnet with oriented inclusions of sillimanite and quartz formed after cordierite under conditions of near-isobaric cooling at 750–630 °C and 6–5 kbar. The symplectites and pencil-shaped garnet are oriented parallel to the shear fabric and in the stretching direction. Low-strain gneisses from thrust sheets show similar M2 decompression cooling and near-isobaric cooling reaction textures that formed within the same P–T range, but under low-strain conditions, as shown by their pseudo-idioblastic shapes that reflect the contours of completely replaced M1 garnet and randomly oriented cordierite–orthopyroxene symplectites. The presence of similar reaction textures reflecting low-strain conditions in gneisses from thrust sheets and high-strain conditions in primary straight gneisses suggests that most of the strain during decompression was partitioned into the bounding shear zones. A younger M3/D3 mylonitic fabric (〈 2637 Ma) in unhydrated mylonites is characterized by brittle deformation of garnet porphyroclasts and ductile deformation of the quartz–plagioclase–biotite matrix developed at 〈 600 °C, as the result of post-decompression shearing under epidote–amphibolite facies conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1438-1168
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Description / Table of Contents: Zusammenfassung ¶Vergleichende Petrologie und metamorphe Entwicklung der hochgradig metamorphen Terrains von Limpopo (Südafrika) und Lappland (Fennoscandia) Eingehende Untersuchungen an Gesteinen aus den hochgradig metamorphen Terrains von Limpopo (Südafrika) und Lappland (Kola-Fennoscania) sollen mögliche Ähnlichkeiten in den geologischen und thermodynamischen Bildungsbedingungen aufzeigen. Beide Komplexe sind Lokale Mineralgleichgewichte innerhalb der Texturen weisen auf ihre schrittweise Bildung während der Abkühlung der granulitfaziellen Gesteine hin. Einige der Texturen in den Metapeliten gehen auf folgende reversible Reaktionen zurück: Grt + Qtz ⇌Opx + Crd und/oder Grt + Sil + Qtz ⇌ Crd. Diese Daten ermöglichten es, sowohl den P-T Pfad der Abkühlung bei Druckentlastung sowie den fast-isobaren P-T Pfad der Abkühlung für jedes HGT zu ermitteln. Der fast-isobare P-T Pfad der Abkühlung ist jedoch kein Charakteristikum der Zentralzonen beider Komplexe. Ein ähnlicher struktureller Rahmen der hochgradigen Terrains, ähnliche Morphologien (Ausbildung der Granulitkörper), ähnliche Reaktionstexturen in Metapeliten und ähnliche P-T Pfade weisen auf Ähnlichkeiten der geodynamischen Entwicklungsgeschichte beider Komplexe hin.
    Notes: Summary ¶Detailed studies of rocks from the Limpopo (South Africa) and Lapland (Kola-Fennoscandia) high-grade terrains were carried out in order to reveal similar geological and thermodynamic conditions in their formation. Both complexes (1) are situated between Archean greenstone belts, (2) are younger than the belts, (3) are bounded by crustal-scale shear zones, (4) have a similar intrusive-like (harpolith) geometry, and (5) show similar reaction textures that reflect both breakdown and growth of garnet in each high-grade terrain. Local mineral equilibria within the textures indicate their successive formation with cooling of the granulite facies rocks. Some of the textures in the metapelites must have resulted from the following reverse reactions: Grt + Qtz ⇌Opx + Crd and/or Grt + Sil + Qtz ⇌ Crd. Based on these data, both the decompression cooling P-T path and the near-isobaric cooling P-T path were deduced for each HGT. However the near-isobaric cooling P-T path is not a characteristic of the central zones of both complexes studied. Similar structural framework of the high-grade terrains, similar morphologies (shapes of granulitic bodies), similar reaction textures developed in metapelites, and similar shapes of P-T paths suggest similarity in geodynamic history of both complexes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1438-1168
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Description / Table of Contents: Zusammenfassung ¶P-T Pfade und tektonische Entwicklung von Scherzonen, die hochgradige Terranes von Kratonen trennen: Zwei Beispiele von der Halbinsel Kola (Russland) und der Limpopo-Region (Südafrika) Die Petrologie und P-T Entwicklung von Glimmerschiefern aus zwei regionalen tektonischen Scherzonen, die hochgradige Terranes (“mobile belts”) von Kratonen trennen, werden beschrieben. Diese sind der 2.4−1.9 Ga Tanaev Belt, eine Suturzone, die die Lappland Granulite vom karelischen Pluton (Halbinsel Kola - Fennoskandien) trennt, sowie die 2.69 Ga Hout River Shear Zone, die den 〉 2.9 Ga Kaapvaal Kraton von der 2.69 Ga South Marginal Zone des hochgradigen Limpopo Terranes (Südafrika) trennt. Zwei metamorphe Zonen sind in stark deformierten Glimmerschiefern der 1.9 Ga Korva Tundra Group zu unterscheiden: (1) eine Chlorit-Staurolith-Zone, die den Gneisen des karelischen Kratons auflagert, und (2) eine Kyanit-Biotit-Zone, die die Granatamphibolite des Tanaev Belt unterlagert und in tektonischem Kontakt mit dem Lappland Granulitkomplex steht. Die prograde Reaktion Chl+St+Ms ↠ Ky+Bt+Qtz+H2O trennt die beiden Zonen. Rotierte Granatporphyroblasten aus der Zone (1) enthalten zahlreiche Einschlüsse (Qtz, Chl, Ms) und zeigen eine Mg/Fe Zonierung, die Granatwachstum während des prograden Metamorphosestadiums nahelegen. Der Metamorphosehöhepunkt (650°C, 7.5 kbar) wurde in der Kyanit-Biotit-Zone erreicht und ist durch nicht zonierte Schneeballgranate charakterisiert. In vielen Glimmerschieferproben sind die euhedralen Granatporphyroblasten des retrograden Stadiums vollkommen einschlußfrei und N Mg nimmt vom Kern zum Rand hin ab. Das zeigt eine Abnahme der P-T Bedingungen von 650°C, 7.5 kbar auf 530°C, 5 kbar an. Die Hout River Shear Zone in Südafrika zeigt eine metamorphe Zonierung von Grünschiefern, über Epidotamphibolite zu Granatamphiboliten. Selten kommen stark deformierte Glimmerschiefer (Chl+Grt+Pl+Ms+Bt+Qtz) als dünne Lagen zwischen den Epidotamphiboliten vor. Die Granatporphyroblasten sind ähnlich wie die aus dem Tanaev Belt und belegen eine prograde P-T Entwicklung mit Peak-Bedingungen von 600°C und ≈ 5.5 kbar. Das retrograde Stadium ist durch die kontinuierliche Reaktion Prp+2Ms+Phl ↠ 6Qtz+3East mit minimal 530°C und ≈ 3.3 kbar dokumentiert. Die sehr ähnlichen P-T Pfade der Glimmerschiefer belegen Ähnlichkeiten in der geodynamischen Geschichte der beiden bearbeiteten Scherzonen.
    Notes: Summary ¶The petrology and P-T evolution of mica schists from two regional scale tectonic (shear) zones that separate high grade terrains (“mobile belts”) from cratons are described. These are the 2.4–1.9 Ga Tanaelv Belt, a suture zone that separates the Lapland granulite complex from the Karelian craton (Kola Peninsula–Fennoscandia), and the 2.69 Ga Hout River Shear Zone that separates the 〉 2.9 Ga Kaapvaal craton from the 2.69 Ga South Marginal Zone of the Limpopo high-grade terrain (South Africa). Two metamorphic zones are identified in strongly deformed mica schists from the 1.9 Ga Korva Tundra Group of the Tanaelv belt: (1) a chlorite-staurolite zone tectonically overlaying gneisses of the Karelian craton, and (2) a kyanite-biotite zone tectonically underlying garnet amphibolites of the Tanaelv Belt, which are in tectonic contact with the Lapland granulite complex. The prograde reaction Chl+St+Ms ↠ Ky+Bt+Qtz+H2O clearly defines a boundary between zones (1) and (2). Rotated garnet porphyroblasts from zone (1) contain numerous inclusions (Otz, Chl, Ms), and show clear Mg/Fe chemical zoning, suggesting garnet growth during prograde metamorphism. The metamorphic peak, T = 650°C and P = 7.5 kbar, is recorded in the kyanite-biotite zone and characterized by unzoned snowball garnet. In many samples of mica schists euhedral garnet porphyroblasts of the retrograde stage are completely devoid of mineral inclusions while N Mg decreases from core to rim, indicating a decrease in P-T from 650°C, 7.5 kbar to 530°C, 5 kbar. The Hout River Shear Zone (South Africa) shows metamorphic zonation from greenschists through epidote amphibolites to garnet amphibolites. Rare strongly deformed mica schists (Chl+Grt+Pl+Ms+Bt+Qtz) occur as thin layers among epidote-amphibolites only. Garnet porphyroblasts in the schists are similar to that of the Tanaelv Belt recording a prograde P-T path with peak conditions of T = 600°C and P∼ 5.5 kbar. The retrograde stage is documented by the continuous reaction Prp+2Ms+Phl ↠ 6Qtz+3East recording a minimum T = 520°C and P ∼ 3.3 kbar. Similar narrow clock-wise P-T loops recorded in mica schists from both studied shear zones suggest similarities in the geodynamic history of both shear zones under consideration.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 140 (2000), S. 212-232 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Reaction textures, fluid inclusions, and metasomatic zoning coupled with thermodynamic calculations have allowed us to estimate the conditions under which a biotite–hornblende gneiss from the Kurunegala district, Sri Lanka [hornblende (NMg=38–42) + biotite (NMg=42–44) + plagioclase + quartz + K-feldspar + ilmenite + magnetite] was transformed into patches of charnockite along shear zones and foliation planes. Primary fluid inclusion data suggest that two immiscible fluids, an alkalic supercritical brine and almost pure CO2, coexisted during the charnockitisation event and subsequent post-peak metamorphic evolution of the charnockite. These metasomatic fluids migrated through the amphibolite gneiss along shear zones and into the wallrock under peak metamorphic conditions of 700–750 °C, 5–6 kbar, and afl H2O=0.52–0.59. This resulted in the formation of charnockite patches containing the assemblage orthopyroxene (NMg=45–48) + K-feldspar (Or70–80) + quartz + plagioclase (An28) in addition to K-feldspar microveins along quartz and plagioclase grain boundaries. Remnants of the CO2-rich fluid were trapped as separate fluid inclusions. The charnockite patches show the following metasomatic zonation patterns: – a transition zone with the assemblage biotite (NMg= 49–51) + hornblende (NMg = 47–50) + plagioclase + quartz + K-feldspar + ilmenite + magnetite; – a KPQ (K-feldspar–plagioclase–quartz) zone with the assemblage K-feldspar + plagioclase + orthopyroxene (NMg=45–48) + quartz + ilmenite + magnetite; – a charnockite core with the assemblage K-feldspar + plagioclase + orthopyroxene (NMg = 39–41) + biotite (NMg=48–52) + quartz + ilmenite + magnetite. Systematic changes in the bulk chemistry and mineralogy across the four zones suggest that along with metasomatic transformation, this process may have been complicated by partial melting in the charnockite core. This melting would have been coeval with metasomatic processes on the periphery of the charnockite patch. There is also good evidence in the charnockitic core that a second mineral assemblage, consisting of orthopyroxene (NMg= 36–42) + biotite (NMg=50–51) + K-feldspar (Or70–80) + quartz + plagioclase (An28–26), could have crystallised from a partial melt during cooling from 720 to 660 °C at decreasing afl H2O from 0.67 to 0.5. Post-magmatic evolution of charnockite at T 〈 700 °C resulted in fluids being released during the crystallisation of the charnockitic core. These gave rise to the formation of late stage rim myrmekites along K-feldspar grain boundaries as well as late stage biotite, cummingtonite, and carbonates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 75 (1981), S. 407-414 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Based on mineralogical themometry and baroraetry and computation of mineral reactions modelling metamorphic sequence, a geotherm for metamorphic belts of the subduction zones has been deduced. Relatively low PT-values (3 kbar/200° C) correspond to zeolite and prehnite-pumpellyite metasediments and at higher pressures and temperatures (10 kbar/400 °C) lawsonite-glaucophane assemblages become unstable. The PT-curve achieves maximum at 11 kbar and 470° C to drop down to normal geotherm (Perchuk 1977). High concentration of H2O in the metamorphic fluid has been revealed, the difference between Pf1 and $$P_{{\text{H}}_{\text{2}} {\text{O}}}$$ being less than 2 kbar. Consideration has also been given to specific thermodynamic regime of zeolite and prehnite-pumpellyite zones of the younger island arcs, where lawsoniteglaucophane zones are absent. Here the geotherm has been found to rise from 0.2kbar/120° C up to 4 kbar/350° C and $$P_{{\text{H}}_{\text{2}} {\text{O}}}$$ -regime similar to that of glaucophane schists formations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 72 (1980), S. 219-228 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The petrochemistry of kimberlites from Yakutia and Lesotho has been studied using a silicate melt model with the SiO2, CO2 and H2O derivatives as the main anions. A model has been developed, according to which the dissolution of H2O in an ultramafic melt results in orthosilicates (H2SiC 4 -2 , H3SiO 4 − , H4SiO4 etc.) rather than metasilicates, while the dissolution of CO2 produces additional hydrocarbonate complexes. It suggests that at high PCO 2 1 , and where the orthosilicic calcium salt clusters are likely to be present in the magma, the kimberlite melt can break down into carbonate and silicate liquids. Therefore, the composition of kimberlite magma will be determined by the H2O/CO2 ratio under the relatively constant fluid pressure. This can be seen from the distinct ‘fluidrs trend in the H2O-CO2-SiO2 diagram for the Yakutia and Lesotho diamond-bearing kimberlites. The H2O/CO2 ratio changes with the liquidus temperature along this trend (Perchuk and Vaganov 1977) which suggests that liquid immiscibility predominates over the simple CO2 solubility in the melts of kimberlite composition. The well-known Boyd's diagrams for the equilibrium PT-conditions in peridotites have been applied along with new experimental data to natural Cpx and Opx, and the PT-parameters were correlated for peridotite inclusions in kimberlite pipes in Yakutia and Lesotho. The liquidus temperatures for the extrapolated area of these correlations gave depths (pressures) at which kimberlite magmas are formed (200–250 km). The hypothesis on SiO2 partitioning between the melt and the fluid was used to calculate the composition of dry initial kimberlite which characterised the average mantle composition: SiO2 — 45.12; TiO2 — 2.49; Al2O3 — 3.58; Cr2O3 — 0.12; FeO — 9.32; MnO — 0.16; CoO — 0.11; MgO — 23.47; CaO — 13.44; Na2O — 0.20; K2O — 1.12; P2O5 — 0.69; S — 0.18; sum — 100 wt.%. This kimberlite is close to wehrlite in composition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Physics and chemistry of minerals 5 (1979), S. 1-14 
    ISSN: 1432-2021
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: Abstract Exchange-mineral equilibria with Al and Fe3+ aqueous chloride solutions (aq.), Andr + AlCl aq 3 = FeCl aq 3 + Gros, (1) Psc + AlCl aq 3 = FeCl aq 3 + Czo, (2) were studied under the following experimental conditions: 500°;C and 580°;C and 1 and 2 kbar, respectively, with an overall concentration of metals in the aqueous solutions of about 0.5 M and pH 3. The mixing functions of the components in garnet and epidote were calculated from the experimental data. Thermodynamic treatment of experimental evidence for reaction (1) led to the conclusion that, within the accuracy of experiment, garnet in the andradite-grossularite series was an ideal solid solution. However, epidote solid solution markedly departed from the ideal, as was shown by concentration and pressure-temperature (PT) dependencies of Gibbs's molar excess energies and by mixing-volume concentration dependence.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...