ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 1 (1980), S. 240-256 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The optical activity of conjugated dienes is investigated by means of ab initio SCF-CI calculations. The computed electronic spectrum of trans-1,3-butadiene is shown to be in good agreement with the results of more rigorous calculations of the valence transitions and in satisfactory agreement with experiment. The optical rotatory strengths of the lower electronic transitions of twisted 1,3-butadiene as a function of dihedral angle are presented and simulated CD spectra are produced. The N → V1 (π2 → π3*) transition is predicted to have a positive rotational strength for all dihedral angles that correspond to a right-handed twist of the chromophore, in accord with the empirically deduced “diene rule” although for a twist angle of 60°, the rotatory strength is calculated to be almost zero. The role of the orientation of allylic bonds is investigated in the model system 1-butene in which the rotational strength of the π → π* transition as a function of rotation about the 2,3 bond is determined. The effect of allylic bond disposition in dienes on the optical activity of the long-wavelength π2 → π3* transition is simulated by use of the exciton coupling model of Harada and Nakanishi in which two 1-butene molecules with suitable geometries are coupled via interactions of the electric dipole transition moments of their π → π* transitions. The model systems 1,3-butadiene and 1-butene are used to rationalize the apparently anomalous optical activity of (-)-α-phellandrene and (-)-β-phellandrene, both of which should have a diene chromophore with a right-handed twist in their most stable conformers and so should be dextrorotatory. The experimental CD spectrum of α-phellandrene is determined at several temperatures down to -180°C. The observed variation of the apparent rotational strength of the N → V1 transition is in good agreement with that predicted by use of the exciton coupling model.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...