ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
  • 2
    Publication Date: 2014-12-01
    Description: Soils and other unconsolidated deposits in the northern circumpolar permafrost region store large amounts of soil organic carbon (SOC). This SOC is potentially vulnerable to remobilization following soil warming and permafrost thaw, but SOC stock estimates were poorly constrained and quantitative error estimates were lacking. This study presents revised estimates of permafrost SOC stocks, including quantitative uncertainty estimates, in the 0–3 m depth range in soils as well as for sediments deeper than 3 m in deltaic deposits of major rivers and in the Yedoma region of Siberia and Alaska. Revised estimates are based on significantly larger databases compared to previous studies. Despite this there is evidence of significant remaining regional data gaps. Estimates remain particularly poorly constrained for soils in the High Arctic region and physiographic regions with thin sedimentary overburden (mountains, highlands and plateaus) as well as for deposits below 3 m depth in deltas and the Yedoma region. While some components of the revised SOC stocks are similar in magnitude to those previously reported for this region, there are substantial differences in other components, including the fraction of perennially frozen SOC. Upscaled based on regional soil maps, estimated permafrost region SOC stocks are 217 ± 12 and 472 ± 27 Pg for the 0–0.3 and 0–1 m soil depths, respectively (±95% confidence intervals). Storage of SOC in 0–3 m of soils is estimated to 1035 ± 150 Pg. Of this, 34 ± 16 Pg C is stored in poorly developed soils of the High Arctic. Based on generalized calculations, storage of SOC below 3 m of surface soils in deltaic alluvium of major Arctic rivers is estimated as 91 ± 52 Pg. In the Yedoma region, estimated SOC stocks below 3 m depth are 181 ± 54 Pg, of which 74 ± 20 Pg is stored in intact Yedoma (late Pleistocene ice- and organic-rich silty sediments) with the remainder in refrozen thermokarst deposits. Total estimated SOC storage for the permafrost region is ∼1300 Pg with an uncertainty range of ∼1100 to 1500 Pg. Of this, ∼500 Pg is in non-permafrost soils, seasonally thawed in the active layer or in deeper taliks, while ∼800 Pg is perennially frozen. This represents a substantial ∼300 Pg lowering of the estimated perennially frozen SOC stock compared to previous estimates.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union (EGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-07-30
    Description: In permafrost soils, the temperature regime and the resulting cryogenic processes are important determinants of the storage of organic carbon (OC) and its small-scale spatial variability. For cryoturbated soils, there is a lack of research assessing pedon-scale heterogeneity in OC stocks and the transformation of functionally different organic matter (OM) fractions, such as particulate and mineral-associated OM. Therefore, pedons of 28 Turbels were sampled in 5 m wide soil trenches across the Siberian Arctic to calculate OC and total nitrogen (TN) stocks based on digital profile mapping. Density fractionation of soil samples was performed to distinguish between particulate OM (light fraction, LF, 〈 1.6 g cm−3), mineral associated OM (heavy fraction, HF, 〉 1.6 g cm−3), and a mobilizable dissolved pool (mobilizable fraction, MoF). Across all investigated soil profiles, the total OC storage was 20.2 ± 8.0 kg m−2 (mean ± SD) to 100 cm soil depth. Fifty-four percent of this OC was located in the horizons of the active layer (annual summer thawing layer), showing evidence of cryoturbation, and another 35 % was present in the upper permafrost. The HF-OC dominated the overall OC stocks (55 %), followed by LF-OC (19 % in mineral and 13 % in organic horizons). During fractionation, approximately 13 % of the OC was released as MoF, which likely represents a readily bioavailable OM pool. Cryogenic activity in combination with cold and wet conditions was the principle mechanism through which large OC stocks were sequestered in the subsoil (16.4 ± 8.1 kg m−2; all mineral B, C, and permafrost horizons). Approximately 22 % of the subsoil OC stock can be attributed to LF material subducted by cryoturbation, whereas migration of soluble OM along freezing gradients appeared to be the principle source of the dominant HF (63 %) in the subsoil. Despite the unfavourable abiotic conditions, low C / N ratios and high δ13C values indicated substantial microbial OM transformation in the subsoil, but this was not reflected in altered LF and HF pool sizes. Partial least-squares regression analyses suggest that OC accumulates in the HF fraction due to co-precipitation with multivalent cations (Al, Fe) and association with poorly crystalline iron oxides and clay minerals. Our data show that, across all permafrost pedons, the mineral-associated OM represents the dominant OM fraction, suggesting that the HF-OC is the OM pool in permafrost soils on which changing soil conditions will have the largest impact.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union (EGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-03-26
    Description: Soils and other unconsolidated deposits in the northern circumpolar permafrost region store large amounts of soil organic carbon (SOC). This SOC is potentially vulnerable to remobilization following soil warming and permafrost thaw, but stock estimates are poorly constrained and quantitative error estimates were lacking. This study presents revised estimates of the permafrost SOC pool, including quantitative uncertainty estimates, in the 0–3 m depth range in soils as well as for deeper sediments (〉3 m) in deltaic deposits of major rivers and in the Yedoma region of Siberia and Alaska. The revised estimates are based on significantly larger databases compared to previous studies. Compared to previous studies, the number of individual sites/pedons has increased by a factor ×8–11 for soils in the 1–3 m depth range,, a factor ×8 for deltaic alluvium and a factor ×5 for Yedoma region deposits. Upscaled based on regional soil maps, estimated permafrost region SOC stocks are 217 ± 15 and 472 ± 34 Pg for the 0–0.3 m and 0–1 m soil depths, respectively (±95% confidence intervals). Depending on the regional subdivision used to upscale 1–3 m soils (following physiography or continents), estimated 0–3 m SOC storage is 1034 ± 183 Pg or 1104 ± 133 Pg. Of this, 34 ± 16 Pg C is stored in thin soils of the High Arctic. Based on generalised calculations, storage of SOC in deep deltaic alluvium (〉3 m to ≤60 m depth) of major Arctic rivers is estimated to 91 ± 39 Pg (of which 69 ± 34 Pg is in permafrost). In the Yedoma region, estimated 〉3 m SOC stocks are 178 +140/−146 Pg, of which 74 +54/−57 Pg is stored in intact, frozen Yedoma (late Pleistocene ice- and organic-rich silty sediments) with the remainder in refrozen thermokarst deposits (±16/84th percentiles of bootstrapped estimates). A total estimated mean storage for the permafrost region of ca. 1300–1370 Pg with an uncertainty range of 930–1690 Pg encompasses the combined revised estimates. Of this, ≤819–836 Pg is perennially frozen. While some components of the revised SOC stocks are similar in magnitude to those previously reported for this region, there are also substantial differences in individual components. There is evidence of remaining regional data-gaps. Estimates remain particularly poorly constrained for soils in the High Arctic region and physiographic regions with thin sedimentary overburden (mountains, highlands and plateaus) as well as for 〉3 m depth deposits in deltas and the Yedoma region.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union (EGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-02-06
    Description: In permafrost soils, the temperature regime and the resulting cryogenic processes are decisive for the storage of organic carbon (OC) and its small-scale spatial variability. For cryoturbated soils there is a lack in the assessment of pedon-scale heterogeneity in OC stocks and the transformation of functionally different organic matter (OM) fractions such as particulate and mineral-associated OM. Therefore, pedons of 28 Turbels across the Siberian Arctic were sampled in five meter wide soil trenches in order to calculate OC and total nitrogen (TN) stocks within the active layer and the upper permafrost based on digital profile mapping. Density fractionation of soil samples was performed to distinguish particulate OM (light fraction, LF, 1.6 g cm−3), and a mobilizable dissolved pool (mobilizable fraction, MoF). Mineral-organic associations were characterized by selective extraction of pedogenic Fe and Al oxides and the clay composition was analyzed by X-ray diffraction. Organic matter transformation in bulk soil and density fractions was assessed by the stable carbon isotope ratio (δ13C) and element contents (C and N). Across all investigated soil profiles, total OC stocks were calculated to 20.2 ± 8.0 kg m−2 (mean ± SD) to 100 cm soil depth. Of this average, 54% of the OC was located in active layer horizons (annual summer thawing layer) showing evidence of cryoturbation, and another 35% was present in the permafrost. The HF-OC dominated the overall OC stocks (55%) followed by LF-OC (19% in mineral and 13% in organic horizons). During fractionation about 13% of the OC was released as MoF, which likely represents the most bioavailable OM pool. Cryogenic activity combined with an impaired biodegradation in topsoil horizons (O and A horizons) were the principle mechanisms to sequester large OC stocks in the subsoil (16.4 ± 8.1 kg m−2; all mineral B, C, and permafrost horizons). About 22% of the subsoil OC stock can be attributed to LF material subducted by cryoturbation, whereas migration of soluble OM along freezing gradients appeared as principle source for the dominating HF (63%) in the subsoil. The large proportion of MoF (15%) in the subsoil suggests a pool of weaker mineral-organic associations as result of the low acidity and presence of basic cations, reductive dissolution of Fe(III) oxides, and the frequent freezing-thawing cycles. Despite the unfavourable abiotic conditions, substantial microbial OM transformation in the subsoil was indicated by low C/N ratios and high δ13C values but this was not reflected in altered LF and HF pool sizes. Partial least square regression analyses suggest that OC accumulates in the HF fraction due to coprecipitation with multivalent cations (Al, Fe) and association with poorly crystalline Fe oxides and clay minerals. Our data show that across all permafrost pedons, mineral-associated OM represents the most important OM fraction but the reactivity of this pool under changing future environmental conditions warrants further attention.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union (EGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-12-23
    Description: High-latitude terrestrial ecosystems are key components in the global carbon cycle. The Northern Circumpolar Soil Carbon Database (NCSCD) was developed to quantify stocks of soil organic carbon (SOC) in the northern circumpolar permafrost region (a total area of 18.7 × 106 km2). The NCSCD is a geographical information system (GIS) data set that has been constructed using harmonized regional soil classification maps together with pedon data from the northern permafrost region. Previously, the NCSCD has been used to calculate SOC storage to the reference depths 0–30 cm and 0–100 cm (based on 1778 pedons). It has been shown that soils of the northern circumpolar permafrost region also contain significant quantities of SOC in the 100–300 cm depth range, but there has been no circumpolar compilation of pedon data to quantify this deeper SOC pool and there are no spatially distributed estimates of SOC storage below 100 cm depth in this region. Here we describe the synthesis of an updated pedon data set for SOC storage (kg C m−2) in deep soils of the northern circumpolar permafrost regions, with separate data sets for the 100–200 cm (524 pedons) and 200–300 cm (356 pedons) depth ranges. These pedons have been grouped into the North American and Eurasian sectors and the mean SOC storage for different soil taxa (subdivided into Gelisols including the sub-orders Histels, Turbels, Orthels, permafrost-free Histosols, and permafrost-free mineral soil orders) has been added to the updated NCSCDv2. The updated version of the data set is freely available online in different file formats and spatial resolutions that enable spatially explicit applications in GIS mapping and terrestrial ecosystem models. While this newly compiled data set adds to our knowledge of SOC in the 100–300 cm depth range, it also reveals that large uncertainties remain. Identified data gaps include spatial coverage of deep (〉 100 cm) pedons in many regions as well as the spatial extent of areas with thin soils overlying bedrock and the quantity and distribution of massive ground ice. An open access data-portal for the pedon data set and the GIS-data sets is available online at http://bolin.su.se/data/ncscd/. The NCSCDv2 data set has a digital object identifier (doi:10.5879/ECDS/00000002).
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-07-01
    Print ISSN: 1351-0754
    Electronic ISSN: 1365-2389
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...