ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: Wildfires emit significant amounts of pollutants that degrade air quality. Plumes from three wildfires in the western U.S. were measured from aircraft during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) and the Biomass Burning Observation Project (BBOP), both in summer 2013. This study reports an extensive set of emission factors (EFs) for over 80 gases and 5 components of submicron particulate matter (PM1) from these temperate wildfires. These include rarely, or never before, measured oxygenated volatile organic compounds and multifunctional organic nitrates. The observed EFs are compared with previous measurements of temperate wildfires, boreal forest fires, and temperate prescribed fires. The wildfires emitted high amounts of PM1 (with organic aerosol (OA) dominating the mass) with an average EF that is more than 2 times the EFs for prescribed fires. The measured EFs were used to estimate the annual wildfire emissions of carbon monoxide, nitrogen oxides, total non methane organic compounds, and PM1 from 11 western U.S. states. The estimated gas emissions are generally comparable with the 2011 National Emissions Inventory (NEI). However, our PM1 emission estimate (1530 +/- 570 Gg/yr) is over 3 times that of the NEI PM2.5 estimate and is also higher than the PM2.5 emitted from all other sources in these states in the NEI. This study indicates that the source of OA from biomass burning in the western states is significantly underestimated. In addition, our results indicate that prescribed burning may be an effective method to reduce fine particle emissions.
    Keywords: Environment Pollution
    Type: GSFC-E-DAA-TN44715 , Journal of Geophysical Research (ISSN 2169-897X); 122; 11; 6108-6129
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Oxidation flow reactors (OFRs) using low-pressure Hg lamp emission at 185 and 254 nm produce OH radicals efficiently and are widely used in atmospheric chemistry and other fields. However, knowledge of detailed OFR chemistry is limited, allowing speculation in the literature about whether some non-OH reactants, including several not relevant for tropospheric chemistry, may play an important role in these OFRs. These non-OH reactants are UV radiation, O(1D), O(3P), and O3. In this study, we investigate the relative importance of other reactants to OH for the fate of reactant species in OFR under a wide range of conditions via box modeling. The relative importance of non-OH species is less sensitive to UV light intensity than to relative humidity (RH) and external OH reactivity (OHRext), as both non-OH reactants and OH scale roughly proportional to UV intensity. We show that for field studies in forested regions and also the urban area of Los Angeles, reactants of atmospheric interest are predominantly consumed by OH. We find that O(1D), O(3P), and O3 have relative contributions to VOC consumption that are similar or lower than in the troposphere. The impact of O atoms can be neglected under most conditions in both OFR and troposphere. Under pathological OFR conditions of low RH and/or high OHRext, the importance of non-OH reactants is enhanced because OH is suppressed. Some biogenics can have substantial destructions by O3, and photolysis at non-tropospheric wavelengths (185 and 254 nm) may also play a significant role in the degradation of some aromatics under pathological conditions. Working under low O2 with the OFR185 mode allows OH to completely dominate over O3 reactions even for the biogenic species most reactive with O3. Non-tropospheric VOC photolysis may have been a problem in some laboratory and source studies, but can be avoided or lessened in future studies by diluting source emissions and working at lower precursor concentrations in lab studies, and by humidification. SOA photolysis is shown to be insignificant for most functional groups, except for nitrates and especially aromatics, which may be photolyzed at high UV flux settings. Our work further establishes the OFR's usefulness as a tool to study atmospheric chemistry and enables better experiment design and interpretation, as well as improved future reactor design.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN31209/SUPP , Atmospheric Chemistry and Physics (e-ISSN 1680-7324); 16; 7; 4283-4305
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Oxidation flow reactors (OFRs) using low-pressure Hg lamp emission at 185 and 254 nm produce OH radicals efficiently and are widely used in atmospheric chemistry and other fields. However, knowledge of detailed OFR chemistry is limited, allowing speculation in the literature about whether some non-OH reactants, including several not relevant for tropospheric chemistry, may play an important role in these OFRs. These non-OH reactants are UV radiation, O(1D), O(3P), and O3. In this study, we investigate the relative importance of other reactants to OH for the fate of reactant species in OFR under a wide range of conditions via box modeling. The relative importance of non-OH species is less sensitive to UV light intensity than to relative humidity (RH) and external OH reactivity (OHRext), as both non-OH reactants and OH scale roughly proportional to UV intensity. We show that for field studies in forested regions and also the urban area of Los Angeles, reactants of atmospheric interest are predominantly consumed by OH. We find that O(1D), O(3P), and O3 have relative contributions to VOC consumption that are similar or lower than in the troposphere. The impact of O atoms can be neglected under most conditions in both OFR and troposphere. Under pathological OFR conditions of low RH and/or high OHRext, the importance of non-OH reactants is enhanced because OH is suppressed. Some biogenics can have substantial destructions by O3, and photolysis at non-tropospheric wavelengths (185 and 254 nm) may also play a significant role in the degradation of some aromatics under pathological conditions. Working under low O2 with the OFR185 mode allows OH to completely dominate over O3 reactions even for the biogenic species most reactive with O3. Non-tropospheric VOC photolysis may have been a problem in some laboratory and source studies, but can be avoided or lessened in future studies by diluting source emissions and working at lower precursor concentrations in lab studies, and by humidification. SOA photolysis is shown to be insignificant for most functional groups, except for nitrates and especially aromatics, which may be photolyzed at high UV flux settings. Our work further establishes the OFR's usefulness as a tool to study atmospheric chemistry and enables better experiment design and interpretation, as well as improved future reactor design.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN31209 , Atmospheric Chemistry and Physics (e-ISSN 1680-7324); 16; 7; 4283-4305
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-05-23
    Description: Isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) can contribute substantially to organic aerosol (OA) concentrations in forested areas under low NO conditions, hence significantly influencing the regional and global OA budgets, accounting for example for 16–36 % of the submicron OA in the SE US summer. Particle evaporation measurements from a thermodenuder show that the volatility of ambient IEPOX-SOA is lower than that of bulk OA and also much lower than that of known monomer IEPOX-SOA tracer species, indicating that IEPOX-SOA likely exists mostly as oligomers in the aerosol phase. The OH aging process of ambient IEPOX-SOA was investigated with an oxidation flow reactor (OFR). New IEPOX-SOA formation in the reactor was negligible, as the OFR cannot accelerate processes such as aerosol uptake and reactions that do not scale with OH. Simulation results indicate that adding ~ 100 µg m−3 of pure H2SO4 to the ambient air allows to efficiently form IEPOX-SOA in the reactor. The heterogeneous reaction rate coefficient of ambient IEPOX-SOA with OH radical (kOH) was estimated as 4.0 ± 2.0 × 10−13 cm3 molec−1 s−1, which is equivalent to more than a 2-week lifetime. A similar kOH was found for measurements of OH oxidation of ambient Amazon forest air in an OFR. At higher OH exposures in the reactor (〉 1 × 1012 molec. cm−3 s), the mass loss of IEPOX-SOA due to heterogeneous reaction was mainly due to revolatilization of fragmented reaction products. We report for the first time OH reactive uptake coefficients (γOH = 0.59 ± 0.33 in SE US and γOH = 0.68 ± 0.38 in Amazon) for SOA under ambient conditions. A relative humidity dependence of kOH and γOH was observed, consistent with surface area-limited OH uptake. No decrease of kOH was observed as OH concentrations increased. These observation of physicochemical properties of IEPOX-SOA can help to constrain OA impact on air quality and climate.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union (EGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-01-02
    Description: Ambient pine forest air was oxidized by OH, O3, or NO3 radicals using an oxidation flow reactor (OFR) during the BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen–Rocky Mountain Biogenic Aerosol Study) campaign to study biogenic secondary organic aerosol (SOA) formation and organic aerosol (OA) aging. A wide range of equivalent atmospheric photochemical ages was sampled, from hours up to days (for O3 and NO3) or weeks (for OH). Ambient air processed by the OFR was typically sampled every 20–30 min, in order to determine how the availability of SOA precursor gases in ambient air changed with diurnal and synoptic conditions, for each of the three oxidants. More SOA was formed during nighttime than daytime for all three oxidants, indicating that SOA precursor concentrations were higher at night. At all times of day, OH oxidation led to approximately 4 times more SOA formation than either O3 or NO3 oxidation. This is likely because O3 and NO3 will only react with gases containing C=C bonds (e.g., terpenes) to form SOA, but won’t react appreciably with many of their oxidation products or any species in the gas phase that lacks a C=C bond (e.g., pinonic acid, alkanes). In contrast, OH can continue to react with compounds that lack C=C bonds to produce SOA. Closure was achieved between the amount of SOA formed from O3 and NO3 oxidation in the OFR and the SOA predicted to form from measured concentrations of ambient monoterpenes and sesquiterpenes using published chamber yields. This is in contrast to previous work at this site (Palm et al., 2016), which has shown that a source of SOA from semi- and intermediate-volatility organic compounds (S/IVOCs) 3.4 times larger than the source from measured VOCs is needed to explain the measured SOA formation from OH oxidation. This work suggests that those S/IVOCs typically do not contain C=C bonds. O3 and NO3 oxidation produced SOA with elemental O:C and H:C similar to the least oxidized OA observed in local ambient air, and neither oxidant led to net mass loss at the highest exposures, in contrast with OH oxidation. An OH exposure in the OFR equivalent to several hours of atmospheric aging also produced SOA with O:C and H:C values similar to ambient OA, while higher aging (days–weeks) led to formation of SOA with progressively higher O:C and lower H:C (and net mass loss at the highest exposures). NO3 oxidation led to the production of particulate organic nitrates (pRONO2), while OH and O3 oxidation (under low NO) did not, as expected. These measurements of SOA formation provide the first direct comparison of SOA formation potential and chemical evolution from OH, O3 and NO3 oxidation in the real atmosphere, and help to clarify the oxidation processes that lead to SOA formation from biogenic hydrocarbons.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union (EGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-01
    Description: Chemical ionization mass spectrometry (CIMS) techniques have become prominent methods for sampling trace gases of relatively low volatility. Such gases are often referred to as being sticky, i.e. having measurement artifacts due to interactions between analyte molecules and instrument walls, given their tendency to interact with wall surfaces via absorption or adsorption processes. These surface interactions can impact the precision, accuracy, and detection limits of the measurements. We introduce a low-pressure ion-molecule reaction (IMR) region primarily built for performing iodide-adduct ionization, though other adduct ionization schemes could be employed. The design goals were to improve upon previous low-pressure IMR versions by reducing impacts of wall interactions at low pressure while maintaining sufficient ion-molecule reaction times. Chamber measurements demonstrate that the IMR delay times (i.e., magnitude of wall interactions) for a range of organic molecules spanning five orders of magnitude in volatility are 3 to 10 times lower in the new IMR compared to previous versions. Despite these improvements, wall interactions are still present and need to be understood. To that end, we also introduce a conceptual framework for considering instrument wall interactions and a measurement protocol to accurately capture the time-dependence of analyte concentrations. This protocol uses short-duration, high-frequency measurements of the total background (i.e., fast zeros) during ambient measurements as well as during calibration factor determinations. This framework and associated terminology applies to any instrument and ionization technique that samples compounds susceptible to wall interactions.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union (EGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-03-01
    Description: Recent work has quantified the delay times in measurements of volatile organic compounds (VOCs) caused by the partitioning between the gas phase and the surfaces of the inlet tubing and instrument itself. In this study we quantify wall partitioning effects on time responses and transmission of multi-functional, semivolatile and intermediate-volatility organic compounds (S/IVOCs) with saturation concentrations (C*) between 100 and 104 µg m−3. The instrument delays of several chemical ionization mass spectrometer (CIMS) instruments increase with decreasing C*, ranging from seconds to tens of minutes, except for the NO3−-CIMS where it is always on the order of seconds. Six different tubing materials were tested. Teflon, including PFA, FEP, and conductive PFA, performs better than metals and Nafion in terms of both delay time and transmission efficiency. Analogous to instrument responses, tubing delays increase as C* decreases, from less than a minute to 〉 100 min. The delays caused by Teflon tubing vs. C* can be modeled using the simple chromatography model of Pagonis et al. (2017). The model can be used to estimate the equivalent absorbing mass concentration (Cw) of each material, and to estimate delays under different flow rates and tubing dimensions. We also include time delay measurements from a series of small polar organic and inorganic analytes in PFA tubing measured by CIMS. Small polar molecules behave differently than larger organic ones, with their delays being predicted by their Henry’s law constants instead of their C*, suggesting the dominance of partitioning to small amounts of water on sampling surfaces as a result of their polarity and acidity properties. PFA tubing has the best performance for gas-only sampling, while conductive PFA appears very promising for sampling S/IVOCs and particles simultaneously. The observed delays and low transmission both affect the quality of gas quantification, especially when no direct calibration is available. Improvements in sampling and instrument response are needed for fast atmospheric measurements of a wide range of S/IVOCs (e.g., by aircraft or for eddy covariance). These methods and results are also useful for more general characterization of surface/gas interactions.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union (EGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-09-09
    Description: During the summer 2013 Southern Aerosol and Oxidant Study (SOAS) field campaign in a rural site in the southeastern United States, the effect of hygroscopicity and composition on the phase state of atmospheric aerosol particles dominated by the organic fraction was studied. The analysis is based on hygroscopicity measurements by a Hygroscopic Tandem Differential Mobility Analyzer (HTDMA), physical phase state investigations by an Aerosol Bounce Instrument (ABI) and composition measurements using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). To study the effect of atmospheric aging on these properties, an OH-radical oxidation flow reactor (OFR) was used to simulate longer atmospheric aging times of up to 3 weeks. Hygroscopicity and bounce behavior of the particles had a clear relationship showing higher bounce at elevated relative humidity (RH) values for less hygroscopic particles, which agrees well with earlier laboratory studies. Additional OH oxidation of the aerosol particles in the OFR increased the O:C and the hygroscopicity resulting in liquefying of the particles at lower RH values. At the highest OH exposures, the inorganic fraction starts to dominate the bounce process due to production of inorganics and concurrent loss of organics in the OFR. Our results indicate that at typical ambient RH and temperature, organic-dominated particles stay mostly liquid in the atmospheric conditions in the southeastern US, but they often turn semisolid when dried below ∼ 50% RH in the sampling inlets. While the liquid phase state suggests solution behavior and equilibrium partitioning for the SOA particles in ambient air, the possible phase change in the drying process highlights the importance of thoroughly considered sampling techniques of SOA particles.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union (EGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
    Publication Date: 2019-06-13
    Description: Recent work has quantified the delay times in measurements of volatile organic compounds (VOCs) caused by the partitioning between the gas phase and the surfaces of the inlet tubing and instrument itself. In this study we quantify wall partitioning effects on time responses and transmission of multifunctional, semivolatile, and intermediate-volatility organic compounds (S/IVOCs) with saturation concentrations (C∗) between 100 and 104 µg m−3. The instrument delays of several chemical ionization mass spectrometer (CIMS) instruments increase with decreasing C∗, ranging from seconds to tens of minutes, except for the NO3- CIMS where it is always on the order of seconds. Six different tubing materials were tested. Teflon, including PFA, FEP, and conductive PFA, performs better than metals and Nafion in terms of both delay time and transmission efficiency. Analogous to instrument responses, tubing delays increase as C∗ decreases, from less than a minute to 〉100 min. The delays caused by Teflon tubing vs. C∗ can be modeled using the simple chromatography model of Pagonis et al. (2017). The model can be used to estimate the equivalent absorbing mass concentration (Cw) of each material, and to estimate delays under different flow rates and tubing dimensions. We also include time delay measurements from a series of small polar organic and inorganic analytes in PFA tubing measured by CIMS. Small polar molecules behave differently than larger organic ones, with their delays being predicted by their Henry's law constants instead of their C∗, suggesting the dominance of partitioning to small amounts of water on sampling surfaces as a result of their polarity and acidity properties. PFA tubing has the best performance for gas-only sampling, while conductive PFA appears very promising for sampling S/IVOCs and particles simultaneously. The observed delays and low transmission both affect the quality of gas quantification, especially when no direct calibration is available. Improvements in sampling and instrument response are needed for fast atmospheric measurements of a wide range of S/IVOCs (e.g., by aircraft or for eddy covariance). These methods and results are also useful for more general characterization of surface–gas interactions.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union (EGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...