ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-01-29
    Description: The potentially significant role of the biogenic trace gas dimethylsulfide (DMS) in determining the Earth's radiation budget makes it necessary to accurately reproduce seawater DMS distribution and quantify its global flux across the sea/air interface. Following a threefold increase of data (from 15,000 to over 47,000) in the global surface ocean DMS database over the last decade, new global monthly climatologies of surface ocean DMS concentration and sea-to-air emission flux are presented as updates of those constructed 10 years ago. Interpolation/extrapolation techniques were applied to project the discrete concentration data onto a first guess field based on Longhurst's biogeographic provinces. Further objective analysis allowed us to obtain the final monthly maps. The new climatology projects DMS concentrations typically in the range of 1–7 nM, with higher levels occurring in the high latitudes, and with a general trend toward increasing concentration in summer. The increased size and distribution of the observations in the DMS database have produced in the new climatology substantially lower DMS concentrations in the polar latitudes and generally higher DMS concentrations in regions that were severely undersampled 10 years ago, such as the southern Indian Ocean. Using the new DMS concentration climatology in conjunction with state-of-the-art parameterizations for the sea/air gas transfer velocity and climatological wind fields, we estimate that 28.1 (17.6–34.4) Tg of sulfur are transferred from the oceans into the atmosphere annually in the form of DMS. This represents a global emission increase of 17% with respect to the equivalent calculation using the previous climatology. This new DMS climatology represents a valuable tool for atmospheric chemistry, climate, and Earth System models.
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-05-20
    Description: Increasing quantities of atmospheric anthropogenic fixed nitrogen entering the open ocean could account for up to about a third of the ocean's external (nonrecycled) nitrogen supply and up to approximately 3% of the annual new marine biological production, approximately 0.3 petagram of carbon per year. This input could account for the production of up to approximately 1.6 teragrams of nitrous oxide (N2O) per year. Although approximately 10% of the ocean's drawdown of atmospheric anthropogenic carbon dioxide may result from this atmospheric nitrogen fertilization, leading to a decrease in radiative forcing, up to about two-thirds of this amount may be offset by the increase in N2O emissions. The effects of increasing atmospheric nitrogen deposition are expected to continue to grow in the future.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Duce, R A -- LaRoche, J -- Altieri, K -- Arrigo, K R -- Baker, A R -- Capone, D G -- Cornell, S -- Dentener, F -- Galloway, J -- Ganeshram, R S -- Geider, R J -- Jickells, T -- Kuypers, M M -- Langlois, R -- Liss, P S -- Liu, S M -- Middelburg, J J -- Moore, C M -- Nickovic, S -- Oschlies, A -- Pedersen, T -- Prospero, J -- Schlitzer, R -- Seitzinger, S -- Sorensen, L L -- Uematsu, M -- Ulloa, O -- Voss, M -- Ward, B -- Zamora, L -- New York, N.Y. -- Science. 2008 May 16;320(5878):893-7. doi: 10.1126/science.1150369.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Oceanography and Atmospheric Sciences, Texas A&M University, College Station, TX 77843, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18487184" target="_blank"〉PubMed〈/a〉
    Keywords: *Atmosphere ; Carbon ; Carbon Dioxide/metabolism ; Ecosystem ; *Human Activities ; Humans ; *Nitrogen/metabolism ; Nitrogen Fixation ; Oceans and Seas ; *Reactive Nitrogen Species/metabolism ; *Seawater
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2005-04-02
    Description: The environmental conditions of Earth, including the climate, are determined by physical, chemical, biological, and human interactions that transform and transport materials and energy. This is the "Earth system": a highly complex entity characterized by multiple nonlinear responses and thresholds, with linkages between disparate components. One important part of this system is the iron cycle, in which iron-containing soil dust is transported from land through the atmosphere to the oceans, affecting ocean biogeochemistry and hence having feedback effects on climate and dust production. Here we review the key components of this cycle, identifying critical uncertainties and priorities for future research.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jickells, T D -- An, Z S -- Andersen, K K -- Baker, A R -- Bergametti, G -- Brooks, N -- Cao, J J -- Boyd, P W -- Duce, R A -- Hunter, K A -- Kawahata, H -- Kubilay, N -- laRoche, J -- Liss, P S -- Mahowald, N -- Prospero, J M -- Ridgwell, A J -- Tegen, I -- Torres, R -- New York, N.Y. -- Science. 2005 Apr 1;308(5718):67-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Environmental Sciences, University of East Anglia, Norwich NR47TJ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15802595" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; Carbon Dioxide ; *Climate ; Desert Climate ; *Dust ; *Iron/metabolism ; Oceans and Seas ; Phytoplankton/physiology ; *Seawater ; Soil
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2002-08-17
    Description: Alkyl nitrates are a significant component of the "odd nitrogen" reservoir and play an important role in regulating tropospheric ozone levels in remote marine regions. Measurements of methyl and ethyl nitrate in seawater and air samples along two Atlantic Ocean transects provide the first direct evidence for an oceanic source of these compounds. Equatorial surface waters were highly supersaturated (up to 800%) in both species, with the waters in the temperate regions generally being closer to equilibrium. A simple box model calculation suggests that the equatorial source could be a major component of the local atmospheric alkyl nitrate budget.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chuck, Adele L -- Turner, Suzanne M -- Liss, Peter S -- New York, N.Y. -- Science. 2002 Aug 16;297(5584):1151-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Environmental Sciences, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK. a.chuck@uea.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12183621" target="_blank"〉PubMed〈/a〉
    Keywords: Air Pollution ; Atlantic Ocean ; Atmosphere/*chemistry ; Bacteria/metabolism ; Ecosystem ; Eukaryota/metabolism ; Nitrates/*analysis/chemistry/metabolism ; Photochemistry ; Seawater/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Analytical chemistry 66 (1994), S. 4093-4096 
    ISSN: 1520-6882
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 247 (1974), S. 181-184 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] This article describes the use of a two-layer model to estimate the flux of various gases across the air-sea ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 323 (1986), S. 141-143 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Figure 1 shows schematically the equipment which we used to investigate the sea-to-air transfer of radionuclides by a bubble-bursting mechanism. Bubbles (200-1,000 jjum diameter) are generated by passing air through a glass frit below the sea surface; when they burst, the droplets formed are drawn ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 282 (1979), S. 823-825 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Fig. 1 Electrophoretic mobility (ME) of particles collected in the Conwy estuary as a function of salinity (S). , 29 April 1979 survey; 0,17 June 1979 survey. The electrophoretic mobility is the velocity per unit of applied electric field of particles moving at the stationary levels of the cell. ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 243 (1973), S. 341-342 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Livingstone4, in the most extensive compilation of river water analyses to date, obtains a worldwide mean dissolved silicon concentration of 13.1 mg SiO2 1?1. These data show that the concentration of silicon in rivers is remarkably constant compared with other major dissolved constituents (for ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 220 (1968), S. 905-906 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] We have estimated the total rate of removal of dissolved silicon from the ocean in biogenous deposits, taking an areal extent of pelagic siliceous oozes7 of 3-8 x 107 km2, an approximate average deposition rate6-9 of 1 cm per 1,000 yr, a maximum dry material content10 of 0-9 g/cm3 and an average ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...