ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-05-15
    Description: From menthol to cholesterol to Taxol, terpenes are a ubiquitous group of molecules (over 55,000 members isolated so far) that have long provided humans with flavours, fragrances, hormones, medicines and even commercial products such as rubber. Although they possess a seemingly endless variety of architectural complexities, the biosynthesis of terpenes often occurs in a unified fashion as a 'two-phase' process. In the first phase (the cyclase phase), simple linear hydrocarbon phosphate building blocks are stitched together by means of 'prenyl coupling', followed by enzymatically controlled molecular cyclizations and rearrangements. In the second phase (the oxidase phase), oxidation of alkenes and carbon-hydrogen bonds results in a large array of structural diversity. Although organic chemists have made great progress in developing the logic needed for the cyclase phase of terpene synthesis, particularly in the area of polyene cyclizations, much remains to be learned if the oxidase phase is to be mimicked in the laboratory. Here we show how the logic of terpene biosynthesis has inspired the highly efficient and stereocontrolled syntheses of five oxidized members of the eudesmane family of terpenes in a modicum of steps by a series of simple carbocycle-forming reactions followed by multiple site-selective inter- and intramolecular carbon-hydrogen oxidations. This work establishes an intellectual framework in which to conceive the laboratory synthesis of other complex terpenes using a 'two-phase' approach.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Ke -- Baran, Phil S -- England -- Nature. 2009 Jun 11;459(7248):824-8. doi: 10.1038/nature08043. Epub 2009 May 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19440196" target="_blank"〉PubMed〈/a〉
    Keywords: Biological Products/chemical synthesis/chemistry ; Biomimetics ; Carbon/*chemistry ; Hydrogen/*chemistry ; Molecular Structure ; Oxidation-Reduction ; Sesquiterpenes/chemical synthesis/chemistry ; Sesquiterpenes, Eudesmane/*chemical synthesis/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-03
    Description: Ingenol is a diterpenoid with unique architecture and has derivatives possessing important anticancer activity, including the recently Food and Drug Administration-approved Picato, a first-in-class drug for the treatment of the precancerous skin condition actinic keratosis. Currently, that compound is sourced inefficiently from Euphorbia peplus. Here, we detail an efficient, highly stereocontrolled synthesis of (+)-ingenol proceeding in only 14 steps from inexpensive (+)-3-carene and using a two-phase design. This synthesis will allow for the creation of fully synthetic analogs of bioactive ingenanes to address pharmacological limitations and provides a strategic blueprint for chemical production. These results validate two-phase terpene total synthesis as not only an academic curiosity but also a viable alternative to isolation or bioengineering for the efficient preparation of polyoxygenated terpenoids at the limits of chemical complexity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jorgensen, Lars -- McKerrall, Steven J -- Kuttruff, Christian A -- Ungeheuer, Felix -- Felding, Jakob -- Baran, Phil S -- New York, N.Y. -- Science. 2013 Aug 23;341(6148):878-82. doi: 10.1126/science.1241606. Epub 2013 Aug 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23907534" target="_blank"〉PubMed〈/a〉
    Keywords: Antineoplastic Agents/*chemical synthesis ; Catalysis ; Diterpenes/*chemical synthesis ; Euphorbia/chemistry ; Monoterpenes/*chemistry ; Oxidoreductases/chemistry ; Stereoisomerism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-01-05
    Description: Here, we report on a scalable route to the polyhydroxylated steroid ouabagenin with an unusual take on the age-old practice of steroid semisynthesis. The incorporation of both redox and stereochemical relays during the design of this synthesis resulted in efficient access to more than 500 milligrams of a key precursor toward ouabagenin-and ultimately ouabagenin itself-and the discovery of innovative methods for carbon-hydrogen (C-H) and carbon-carbon activation and carbon-oxygen bond homolysis. Given the medicinal relevance of the cardenolides in the treatment of congestive heart failure, a variety of ouabagenin analogs could potentially be generated from the key intermediate as a means of addressing the narrow therapeutic index of these molecules. This synthesis also showcases an approach to bypass the historically challenging problem of selective C-H oxidation of saturated carbon centers in a controlled fashion.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4365795/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4365795/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Renata, Hans -- Zhou, Qianghui -- Baran, Phil S -- CA134785/CA/NCI NIH HHS/ -- R01 CA134785/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2013 Jan 4;339(6115):59-63. doi: 10.1126/science.1230631.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23288535" target="_blank"〉PubMed〈/a〉
    Keywords: Cardenolides/*chemical synthesis/chemistry/therapeutic use ; Heart Failure/drug therapy ; Humans ; Ouabain/*analogs & derivatives/chemical synthesis/chemistry/therapeutic use ; Oxidation-Reduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-12-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Keasling, Jay D -- Mendoza, Abraham -- Baran, Phil S -- England -- Nature. 2012 Dec 13;492(7428):188-9. doi: 10.1038/492188a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23235869" target="_blank"〉PubMed〈/a〉
    Keywords: Biotechnology/economics/*trends ; Chemistry Techniques, Synthetic/economics/*methods/trends ; *Synthetic Biology/economics/methods
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-09-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Villaume, Matthew T -- Baran, Phil S -- England -- Nature. 2014 Sep 18;513(7518):324-5. doi: 10.1038/513324a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Scripps Research Institute, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25230652" target="_blank"〉PubMed〈/a〉
    Keywords: Alkenes/*chemical synthesis ; Animals ; Biological Products/*chemical synthesis ; Fatty Alcohols/*chemical synthesis ; Monosaccharides/*chemical synthesis ; Pyrans/*chemical synthesis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-12-04
    Description: Nitrogen-rich heterocyclic compounds have had a profound effect on human health because these chemical motifs are found in a large number of drugs used to combat a broad range of diseases and pathophysiological conditions. Advances in transition-metal-mediated cross-coupling have simplified the synthesis of such molecules; however, C-H functionalization of medicinally important heterocycles that does not rely on pre-functionalized starting materials is an underdeveloped area. Unfortunately, the innate properties of heterocycles that make them so desirable for biological applications--such as aqueous solubility and their ability to act as ligands--render them challenging substrates for direct chemical functionalization. Here we report that zinc sulphinate salts can be used to transfer alkyl radicals to heterocycles, allowing for the mild (moderate temperature, 50 degrees C or less), direct and operationally simple formation of medicinally relevant C-C bonds while reacting in a complementary fashion to other innate C-H functionalization methods (Minisci, borono-Minisci, electrophilic aromatic substitution, transition-metal-mediated C-H insertion and C-H deprotonation). We prepared a toolkit of these reagents and studied their reactivity across a wide range of heterocycles (natural products, drugs and building blocks) without recourse to protecting-group chemistry. The reagents can even be used in tandem fashion in a single pot in the presence of water and air.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3518649/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3518649/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fujiwara, Yuta -- Dixon, Janice A -- O'Hara, Fionn -- Funder, Erik Daa -- Dixon, Darryl D -- Rodriguez, Rodrigo A -- Baxter, Ryan D -- Herle, Bart -- Sach, Neal -- Collins, Michael R -- Ishihara, Yoshihiro -- Baran, Phil S -- GM-073949/GM/NIGMS NIH HHS/ -- R01 GM073949/GM/NIGMS NIH HHS/ -- England -- Nature. 2012 Dec 6;492(7427):95-9. doi: 10.1038/nature11680. Epub 2012 Nov 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23201691" target="_blank"〉PubMed〈/a〉
    Keywords: Air ; Alkylation ; Biological Products/chemistry ; Carbon/*chemistry ; Drug Design ; Hydrogen/*chemistry ; Hydrogen Bonding ; Indicators and Reagents/chemistry ; Methylation ; Nitrogen/chemistry ; Pharmaceutical Preparations/chemistry ; Sulfinic Acids/chemistry ; Water ; Zinc/chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-10-29
    Description: Flavoproteins catalyse a diversity of fundamental redox reactions and are one of the most studied enzyme families. As monooxygenases, they are universally thought to control oxygenation by means of a peroxyflavin species that transfers a single atom of molecular oxygen to an organic substrate. Here we report that the bacterial flavoenzyme EncM catalyses the peroxyflavin-independent oxygenation-dehydrogenation dual oxidation of a highly reactive poly(beta-carbonyl). The crystal structure of EncM with bound substrate mimics and isotope labelling studies reveal previously unknown flavin redox biochemistry. We show that EncM maintains an unexpected stable flavin-oxygenating species, proposed to be a flavin-N5-oxide, to promote substrate oxidation and trigger a rare Favorskii-type rearrangement that is central to the biosynthesis of the antibiotic enterocin. This work provides new insight into the fine-tuning of the flavin cofactor in offsetting the innate reactivity of a polyketide substrate to direct its efficient electrocyclization.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3844076/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3844076/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Teufel, Robin -- Miyanaga, Akimasa -- Michaudel, Quentin -- Stull, Frederick -- Louie, Gordon -- Noel, Joseph P -- Baran, Phil S -- Palfey, Bruce -- Moore, Bradley S -- R01 AI047818/AI/NIAID NIH HHS/ -- R01AI47818/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Nov 28;503(7477):552-6. doi: 10.1038/nature12643. Epub 2013 Oct 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, USA [2].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24162851" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-Bacterial Agents/biosynthesis ; Bacterial Proteins/chemistry/*metabolism ; Biocatalysis ; Bridged Compounds/metabolism ; Crystallography, X-Ray ; Cyclization ; Flavins/*metabolism ; Flavoproteins/chemistry/*metabolism ; Isotope Labeling ; Mixed Function Oxygenases/chemistry/*metabolism ; Models, Chemical ; Models, Molecular ; Oxidation-Reduction ; Polyketides/metabolism ; Protein Conformation ; Streptomyces/*enzymology/metabolism ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-12-19
    Description: Carbon-carbon (C-C) bonds form the backbone of many important molecules, including polymers, dyes and pharmaceutical agents. The development of new methods to create these essential connections in a rapid and practical fashion has been the focus of numerous organic chemists. This endeavour relies heavily on the ability to form C-C bonds in the presence of sensitive functional groups and congested structural environments. Here we report a chemical transformation that allows the facile construction of highly substituted and uniquely functionalized C-C bonds. Using a simple iron catalyst, an inexpensive silane and a benign solvent under ambient atmosphere, heteroatom-substituted olefins are easily reacted with electron-deficient olefins to create molecular architectures that were previously difficult or impossible to access. More than 60 examples are presented with a wide array of substrates, demonstrating the chemoselectivity and mildness of this simple reaction.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4271735/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4271735/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lo, Julian C -- Gui, Jinghan -- Yabe, Yuki -- Pan, Chung-Mao -- Baran, Phil S -- GM-097444/GM/NIGMS NIH HHS/ -- R01 GM097444/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 Dec 18;516(7531):343-8. doi: 10.1038/nature14006.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25519131" target="_blank"〉PubMed〈/a〉
    Keywords: Alkenes/*chemistry ; Carbon/*chemistry ; Chemistry Techniques, Synthetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-08-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Farmer, Marcus E -- Baran, Phil S -- England -- Nature. 2015 Aug 13;524(7564):164-5. doi: 10.1038/524164a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Scripps Research Institute, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26268186" target="_blank"〉PubMed〈/a〉
    Keywords: Chemistry Techniques, Synthetic/*methods
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-10-11
    Description: Cycloaddition is an essential tool in chemical synthesis. Instead of using light or heat as a driving force, marine sponges promote cycloaddition with a more versatile but poorly understood mechanism in producing pyrrole-imidazole alkaloids sceptrin, massadine, and ageliferin. Through de novo synthesis of sceptrin and massadine, we show that sponges may use single-electron oxidation as a central mechanism to promote three different types of cycloaddition. Additionally, we provide surprising evidence that, in contrast to previous reports, sceptrin, massadine, and ageliferin have mismatched chirality. Therefore, massadine cannot be an oxidative rearrangement product of sceptrin or ageliferin, as is commonly believed. Taken together, our results demonstrate unconventional chemical approaches to achieving cycloaddition reactions in synthesis and uncover enantiodivergence as a new biosynthetic paradigm for natural products.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4205478/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4205478/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ma, Zhiqiang -- Wang, Xiaolei -- Wang, Xiao -- Rodriguez, Rodrigo A -- Moore, Curtis E -- Gao, Shuanhu -- Tan, Xianghui -- Ma, Yuyong -- Rheingold, Arnold L -- Baran, Phil S -- Chen, Chuo -- R01 GM073949/GM/NIGMS NIH HHS/ -- R01 GM079554/GM/NIGMS NIH HHS/ -- R01-GM073949/GM/NIGMS NIH HHS/ -- R01-GM079554/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Oct 10;346(6206):219-24. doi: 10.1126/science.1255677.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. ; Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA. ; Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA. ; Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. chuo.chen@utsouthwestern.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25301624" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biosynthetic Pathways ; *Cycloaddition Reaction ; Molecular Structure ; Porifera/*metabolism ; Pyrroles/*chemical synthesis/chemistry/metabolism ; Stereoisomerism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...