All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Proceed order?

  • 1
    Publication Date: 2020-07-31
    Description: Arsenic (As) contamination in groundwater remains a pressing global challenge. In this study, we evaluated the potential of green rust (GR), a redox-active iron phase frequently occurring in anoxic environments, to treat As contamination at a former wood preservation site. We performed long-term batch experiments by exposing synthetic GR sulfate (GRSO4) to As-free and As-spiked (6 mg L−1) natural groundwater at both 25 and 4 °C. At 25 °C, GRSO4 was metastable in As-free groundwater and transformed to GRCO3, and then fully to magnetite within 120 days; however, GRSO4 stability increased 7-fold by lowering the temperature to 4 °C, and 8-fold by adding As to the groundwater at 25 °C. Highest GRSO4 stability was observed when As was added to the groundwater at 4 °C. This stabilizing effect is explained by GR solubility being lowered by adsorbed As and/or lower temperatures, inhibiting partial GR dissolution required for transformation to GRCO3, and ultimately to magnetite. Despite these mineral transformations, all added As was removed from As-spiked samples within 120 days at 25 °C, while uptake was 2 times slower at 4 °C. Overall, we have successfully documented that GR is an important mineral substrate for As immobilization in anoxic subsurface environments.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...