ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-31
    Description: The temperature and internal energy fields calculated by Takata et al. in the plume are used to calculate the greybody thermal radiation emitted versus wavelength to predict what might be observed by several spectral sensors operating from different platforms when fragments of Comet Shoemaker-Levy 9 (SL-9) impact Jupiter in July 1994. A SPH code was used by Takata et al. to calculate the full three dimensional flow and thermodynamic fields in the comet fragment and the atmosphere of Jupiter. We determined the fragment penetration depth, energy partitioning between the atmosphere and the impactor, and energy density deposited per unit length over the trajectory. Once the impactor had disintegrated and stopped, and the strong atmospheric shock decayed, the flow is driven by buoyancy effects. We then used our SPH code to calculate the flow and thermodynamic fields: pressure, article velocity, temperature, and internal energy distributions in the plume. The calculations for 2 and 10 km cometary fragments yield maximum deposition depths of approximately 175 and 525 km, respectively (1 bar = 0 km depth). We also calculated that 0.7 and 0.6 of the initial kinetic energy of the 10 and 2 km bolides, respectively, are deposited as internal energy in Jupiter's atmosphere.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., The Twenty-Fifth Lunar and Planetary Science Conference. Part 1: A-G; p 5-6
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-29
    Description: According to a study at the California Institute of Technology, the carbon dioxide (CO2) released by a meteor or comet striking the earth 65 million years ago could have doomed many species of animals and plants by dramatically raising temperatures worldwide. The results of this study will be presented at the 19th Lunar and Planetary Science Conference in Houston, Texas.
    Keywords: ENVIRONMENT POLLUTION
    Type: Lunar and Planetary Inst., Nineteenth Lunar and Planetary Science Conference. Press abstracts; p 28-30
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-31
    Description: Since Alvarez et al., discovered a worldwide approx. cm-thick layer of fine sediments laden with platinum group elements in approximately chondritic proportions exactly at the Cretaceous-Tertiary (C-T) boundary, and proposed bolide-impact as triggering mass extinctions, many have studied this hypothesis and the layer itself with its associated spherules and shocked quartz. At issue is whether the mass extinctions, and this horizon has an impact versus volcanic origin. A critical feature of the Alvarez hypothesis is the suggestion that the bolide or possibly a shower of objects delivered to the earth approx. 0.6 x 10 to the 18th power g of material which resulted in aerosol-sized ejecta such that global insolation was drastically reduced for significant periods. Such an event would lower temperatures on continents and halt photosynthesis in the upper 200 m of th eocean. The latter would strangle the marine food chain and thus produce the major marine faunal extinctions which mark the C-T boundary. Crucial issues examined include: What are the dynamics of atmospheric flow occurring upon impact of a large bolide with the earth; What is the size distributions of the very fine impact ejecta and how do these compare to the models of ejecta which are used to model the earth's radiative thermal balance. The flow field due to passage of a 10 km diameter bolide through an exponential atmosphere and the interaction of the gas flow and bolide with the solid ear was calculated. The CO2 released upon impact onto shallow marine carbonate sections was modeled and found that the mass of CO2 released exceeds the present 10 to the 18th power g CO2 budget of the earth's atmosphere by several times. Using the calculations of Kasting and Toon it was found that to compute the temperature rise of the earth's surface as a function of CO2 content, it was found that sudden and prolonged global increases are induced from impact of 20 to 50 km radius projectiles and propose that sudden terrestrial greenhouse-induced heating, not cooling, produced the highly variable extinctions seen at the C-T boundary.
    Keywords: ENVIRONMENT POLLUTION
    Type: Lunar and Planetary Inst., Global Catastrophes in Earth History: An Interdisciplinary Conference on Impacts, Volcanism, and Mass Mortality; p 133-134
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-31
    Description: Shock-melting features occur on planets at scales that range from micrometers to megameters. It is the objective of this study to determine the extent of thickness, volume geometry of the melt, and relationship with crater morphology. The variation in impact crater morphology on planets is influenced by a broad range of parameters: e.g., planetary density, thermal state, strength, impact velocity, gravitational acceleration. We modeled the normal impact of spherical projectiles on a semi-infinite planet over a broad range of conditions using numerical techniques.
    Keywords: GEOPHYSICS
    Type: Lunar and Planetary Inst., International Conference on Large Meteorite Impacts and Planetary Evolution; p 55-56
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: We have employed three-dimensional numerical simulations of the impact of Comet Shoemaker-Levy 9 (SL9) on Jupiter and the resulting vapor plume expansion using the smoothed particle hydrodynamics (SPH) method. An icy body with a diameter of 2 km can penetrate to an altitude of -350 km (0 km = 1 bar) and most of the incident kinetic energy is transferred to the atmosphere between -100 to -250 km. This energy is converted to potential energy of the resulting gas plume. The unconfined plume expands vertically and has a peak radiative power approximately equal to the total radiation from Jupiter's disc. The plume rises a few tens of atmospheric scale heights in approximately 10(exp 2) seconds. The rising plume reaches the altitude of approximately 3000 km; however, no atmospheric gas is accelerated to the escape velocity (approximately 60 km/s).
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: NASA-CR-200015 , NAS 1.26:200015 , NIPS-96-07155
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: To obtain a quantitative understanding of the cratering process over a broad range of conditions, we have numerically computed the evolution of impact induced flow fields and calculated the time histories of the major measures of crater geometry (e.g., depth diameter, lip height ...) for variations in planetary gravity (0 to 10 exp 9 cm/sq seconds), material strength (0 to 140 kbar), thermodynamic properties, and impactor radius (0.05 to 5000 km). These results were fit into the framework of the scaling relations of Holsapple and Schmidt (1987). We describe the impact process in terms of four regimes: (1) penetration; (2) inertial; (3) terminal; and (4) relaxation.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-01-25
    Description: Large scale impacts are a key aspect of the accretion and growth of the planets, the evolution of their atmospheres, and the viability of their life forms. We have performed an extensive series of numerical calculations that examined the mechanics of impacts over a broad range of conditions and are now extending these to account for the effects of the planetary atmosphere. We have examined the effects of large scale impacts in which the trapping and compression of an atmosphere during impact is a significant factor in the transfer of energy to the atmosphere. The various energy transfer regimes and where conventional drag and trapping and subsequent compression of atmosphere between the bolide and planetary surface are significant are shown.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., Twenty-Fourth Lunar and Planetary Science Conference. Part 3: N-Z; p 1101-1102
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-17
    Description: We modeled in detail the ejecta dynamics associated with the Chicxulub impact. We determined: (1) ejecta trajectories, (2) stratigraphic motions, (3) depth of ejecta stages, (4) thermodynamic histories of the ejecta particles, and (5) the final ejecta distribution. Additional information is contained in the original extended abstract.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXII; LPI-Contrib-1080
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-17
    Description: We characterized the impact physics in collisions on porous bodies by various density projectiles and defined different penetration modes (compression, spreading, or breakup) based on transitions between instability regimes. Additional information is contained in the original extended abstract.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXII; LPI-Contrib-1080
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-12
    Description: Cratering flow calculations for a series of oblique to normal impacts of silicate projectiles onto a silicate halfspace were carried out to determine whether the gas produced upon shock vaporizing both projectile and planetary material could entrain and accelerate surface rocks and thus provide a mechanism for propelling SNC meteorites from the Martian surface. The difficult constraints that the impact origin hypothesis for SNC meteorities has to satisfy are that these meteorites are lightly to moderately shocked and yet were accelerated to speeds in excess of the Martian escape velocity. Two dimensional finite difference calculations demonstrate that at highly probable impact velocities, vapor plume jets are produced at oblique impact angles of 25 deg to 60 deg and have speeds as great as 20 km/sec. These plumes flow nearly parallel to the planetary surface. It is shown that upon impact of projectiles having radii of 0.1 to 1 km, the resulting vapor jets have densities of 0.1 to 1 g/cu cm. These jets can entrain Martian surface rocks and accelerate them to velocities 5 km/sec. It is suggested that this mechanism launches SNC meteorites to earth.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Science (ISSN 0036-8075); 234; 346-349
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...