ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 79 (1984), S. 231-243 
    ISSN: 1432-1424
    Keywords: H−-ATPase ; plant plasma membrane ; solubilization ; reconstitution ; vanadate ; red beet
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary A vanadate-sensitive H+-translocating ATPase isolated from red beet plasma membrane has been solubilized in active form and successfully reconstituted into artificial proteoliposomes. The H+-ATPase was solubilized in active form with deoxycholate, CHAPSO or octylglucoside in the presence of glycerol. Following detergent removal by gel filtration and reconstitution into proteoliposomes, ATP:Mg-dependent H+ transport could be measured as ionophore-reversible quenching of acridine orange fluorescence. Solubilization resulted in a three-to fourfold purification of the plasma membrane ATPase, with some additional enrichment of specific activity following reconstitution. H+ transport activity was inhibited half-maximally between 1 and 5 μM vanadate (Na3VO4) and nearly abolished by 100 μM vanadate. ATPase activity of native plasma membrane showed aK i for vanadate inhibition of 9.5 μM, and was inhibited up to 80% by 15 to 20 μM vanadate (Na3VO4). ATPase activity of the reconstituted vesicles showed aK i of 2.6 μM for vanadate inhibition. The strong inhibition by low concentrations of vanadate indicates a plasma membrane rather than a mitochondrial or tonoplast origin for the reconstituted enzyme.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 79 (1984), S. 245-256 
    ISSN: 1432-1424
    Keywords: H+-ATPase ; plant plasma membrane ; reconstitution ; vanadate ; red beet
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary Characteristics of the native and reconstituted H+-ATPase from the plasma membrane of red beet (Beta vulgaris L.) were examined. The partially purified, reconstituted H+-ATPase retained characteristics similar to those of the native plasma membrane H+-ATPase following reconstitution into proteoliposomes. ATPase activity and H+ transport of both enzymes were inhibited by vanadate, DCCD, DES and mersalyl. Slight inhibition of ATPase activity associated with native plasma membranes by oligomycin, azide, molybdate or NO 3 − was eliminated during solubilization and reconstitution, indicating the loss of contaminating ATPase activities. Both native and reconstituted ATPase activities and H+ transport showed a pH optimum of 6.5, required a divalent cation (Co2+〉Mg2+〉Mn2+〉Zn2+〉Ca2+), and preferred ATP as substrate. The Mg:ATP kinetics of the two ATPase activities were similar, showing simple Michaelis-Menten kinetics. Saturation occurred between 3 and 5mM Mg: ATP, with aK m of 0.33 and 0.46mM Mg: ATP for the native and reconstituted enzymes, respectively. The temperature optimum for the ATPase was shifted from 45 to 35°C following reconstitution. Both native and reconstituted H+-ATPases were stimulated by monovalent ions. Native plasma membrane H+-ATPase showed an order of cation preference of K+〉NH 4 + 〉Rb+〉Na+〉Cs+〉Li+〉choline+. This basic order was unchanged following reconstitution, with K+, NH 4 + , Rb+ and Cs+ being the preferred cations. Both enzymes were also stimulated by anions although to a lesser degree. The order of anion preference differed between the two enzymes. Salt stimulation of ATPase activity was enhanced greatly following reconstitution. Stimulation by KCl was 26% for native ATPase activity, increasing to 228% for reconstituted ATPase activity. In terms of H+ transport, both enzymes required a cation such as K+ for maximal transport activity, but were stimulated preferentially by Cl− even in the presence of valinomycin. This suggests that the stimulatory effect of anions on enzyme activity is not simply as a permeant anion, dissipating a positive interior membrane potential, but may involve a direct anion activation of the plasma membrane H+-ATPase.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Plant Physiology and Plant Molecular Biology 48 (1997), S. 547-574 
    ISSN: 1040-2519
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract Pollination regulates a syndrome of developmental responses that contributes to successful sexual reproduction in higher plants. Pollination-regulated developmental events collectively prepare the flower for fertilization and embryogenesis while bringing about the loss of floral organs that have completed their function in pollen dispersal and reception. Components of this process include changes in flower pigmentation, senescence and abscission of floral organs, growth and development of the ovary, and, in certain cases, pollination also triggers ovule and female gametophyte development in anticipation of fertilization. Pollination-regulated development is initiated by the primary pollination event at the stigma surface, but because developmental processes occur in distal floral organs, the activity of interorgan signals that amplify and transmit the primary pollination signal to floral organs is implicated. Interorgan signaling and signal amplification involves the regulation of ethylene biosynthetic gene expression and interorgan transport of hormones and their precursors. The coordination of pollination- regulated flower development including gametophyte, embryo, and ovary development; pollination signaling; the molecular regulation of ethylene biosynthesis; and interorgan communication are presented.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2048
    Keywords: Key words:Arabidopsis (cell cycle) ; Cell cycle ; Copy DNA (ATskp1) ; Kinetochore protein (SKP1 gene) ; Meristem (cell division) ; Phalaenopsis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. The yeast SKP1 gene and its human homolog p19 skp1 encode a kinetochore protein required for cell cycle progression at both the DNA synthesis and mitosis phases of the cell cycle. In orchids we identified a cDNA (O108) that is expressed in early stages of ovule development and is homologous to the yeast SKP1. Based on the orchid O108 cDNA clone, we identified and characterized an Arabidopsis thaliana (L.) Heynh. cDNA designated ATskp1 that also has high sequence similarity to yeast SKP1. The Arabidopsis ATskp1 is a single-copy gene that mapped to chromosome 1. The expression of the ATskp1 gene was highly correlated with meristem activity in that its mRNA accumulated in all of the plant meristems including the vegetative shoot meristem, inflorescence and floral meristems, root meristem, and in the leaf and floral organ primordia. In addition, ATskp1 was also highly expressed in the dividing cells of the developing embryo, and in other cells that become multinucleate or undergo endoreplication events such as the endosperm free nuclei, the tapetum and the endothelium. Based on its spatial pattern of expression, ATskp1 is a marker for cells undergoing division and may be required for meristem activity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-5087
    Keywords: ACC ; auxin ; Phalaenopsis ; pollen signal ; pollination
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In many flowers, and especially in orchids, pollination regulates a syndrome of developmental events that collectively prepare the flower for fertilization while shedding of organs that have completed their function in pollen dispersal and reception. In this study, we performed a water extraction of the primary pollen signal(s) from the pollinia of Phalaenopsis flowers and characterized its biochemical nature. The primary pollen signal is readily soluble in water and is a relatively small molecular substance below 3000 MW. The pollen signal is probably not proteinaceous in nature, since biological activity was retained after digesting the pollen diffusate by Proteinase K or boiling for 30. By separating the pollen diffusate on an amino anion exchange column, we found that different fractions induced the postpollination syndrome suggesting that different pollen-borne substances may be involved in the pollination response. More than 90% of a radiolabeled free IAA standard coeluted with a specific fraction, however other collected fractions also induced the postpollination response, suggesting that IAA can not be the only primary pollen signal as previously described. High pressure liquid chromatography analysis revealed that the pollen diffusate contained two major peaks and five smaller peaks of detected substances. Fractions containing substances from two of these peaks completely mimicked the postpollination response of perianth senescence and ovary growth, while fractions of the other peaks only induced perianth senescence. By running additional standards, it was found that 1-aminocyclopropane-1-carboxylic acid peaked at the same retention time as one of the major pollen diffusate peaks, while the free IAA standard peak could not be correlated to any of the pollen diffusate peaks. In the future, further purification of these peaks, and analysis by gas chromatography coupled with mass spectrometry, will provide more information about the exact nature of the primary pollen signals.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-5028
    Keywords: HMG1 ; HMG box ; photoperiodic induction ; flowering ; circadian rhythm ; Pharbitis nil
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A cDNA clone encoding an HMG1 protein from Pharbitis nil was characterized with regard to its sequence, genomic organization and regulation in response to photoperiodic treatments that control floral induction. The HMG1 cDNA contains an open reading frame of 432 nucleotides encoding a 144 amino acid protein of approximately 16 kDa. The predicted polypeptide has the characteristic conserved motifs of the HMG1 and HMG2 class of proteins including an N-terminal basic region, one of two HMG-box domains, and a polyacidic carboxy terminus. Within the HMG-box region, Pharbitis HMG1 deduced amino acid sequence shares 47%, 67% and 69% identity with its animal, maize, and soybean counterparts, respectively. Southern blot hybridization analysis suggests that HMG1 is a member of a multigene family. Analysis of mRNA abundance indicates that the HMG1 gene is expressed to higher levels in dark-grown tissue, such as roots, and at lower levels in light-grown tissue, such as cotyledons and stems. Following the transition to darkness, the levels of HMG1 mRNA in cotyledons were initially stable, however, after a lag time of 8 h or more, HMG1 mRNA increased in abundance to a peak level at 20 h. A second peak in mRNA levels was observed about 24 h later, indicating that the expression of the HMG1 gene is regulated by an endogenous circadian rhythm. Abundance of the HMG1 mRNA during a dark period was dramatically affected by brief light exposure (night break), a treatment which inhibits floral induction. These data indicate that the expression of HMG1 is regulated by both an endogenous rhythm and the light/dark cycle and are consistent with a role for HMG1 in maintaining patterns of circadian-regulated gene expression activated upon the transition from light to darkness.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-5028
    Keywords: HMG1 ; HMG2 ; circadian rhythm ; flowering ; photoperiodic induction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The abundance of an mRNA encoding an HMG1/2 protein from Pharbitis nil (HMG1) has been previously shown to be regulated by light and an endogenous rhythm in cotyledons. A second Pharbitis nil HMG cDNA (HMG2) was characterized. The sequence of HMG2 was 82% and 86% identical to HMG1 at the nucleotide and amino acid level, respectively. As with HMG1, HMG2 mRNA was detected in all vegetative tissues and was most abundant in roots. However, unlike HMG1, HMG2 mRNA abundance did not increase upon transfer of cotyledons to darkness and did not exhibit regulation by an endogenous circadian rhythm when maintained in continuous darkness over a 68 h period. Similarly, while the abundance of HMG1 mRNA during a dark period that induced photoperiodically controlled flowering was dramatically affected by brief light exposure (night break), this treatment had no effect on HMG2 mRNA abundance. Collectively, these data are consistent with a role of HMG1 in contributing to the circadian-regulated and/or dark-regulated gene expression with constitutive expression of HMG2 playing a housekeeping role in the general regulation of gene expression in Pharbitis nil cotyledons.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1617-4623
    Keywords: Anthocyanin-less mutants ; cDNA ; Chalcone synthase ; Tomato
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Twelve loci have previously been identified in tomato (Lycopersicon esculentum) that control the intensity and distribution of anthocyanin pigmentation; these are useful genetic markers because they encode phenotypes that are readily visualized in the hypocotyls of emerging seedlings. In order to obtain molecular probes for tomato anthocyanin biosynthesis genes, we isolated two cDNAs which encode chalcone synthase (CHS), one of the key enzymes in anthocyanin biosynthesis, from a tomato hypocotyl cDNA library. By comparing their nucleic acid sequences, we determined that the two CHS cDNAs have an overall similarity of 76% at the nucleotide level and 88% at the amino acid level. We identified hybridization conditions that would distinguish the two clones and by Northern analysis showed that 1.5 kb mRNA species corresponding to each cDNA were expressed in cotyledons, hypocotyls and leaves of wild-type seedlings. Hybridization of the cDNAs at low stringency to genomic blots indicated that in tomato, CHS genes comprise a family of at least three individual members. The two genes that encode the CHS cDNAs were then placed onto the tomato genetic map at unique loci by restriction fragment length polymorphism mapping. We also assayed the activity of CHS and another enzyme in the anthocyanin pathway, flavone 3-hydroxylase, in hypocotyl extracts of wild-type tomato and a number of anthocyanin-deficient mutants. Five mutants had reduced CHS activity when compared to the wildtype controls. Of these, three were also reduce in flavone 3-hydroxylase activity, suggesting a regulatory role for these loci. The other two mutants were preferentially reduced in CHS activity, suggesting a more specific role for these loci in CHS expression.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1617-4623
    Keywords: DNA sequence ; Isozymes ; Protein structure ; Gibberellic acid
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Two cDNA clones, pOS103 and pOS137, were isolated which code for distinct α-amylase isozymes in germinating rice seeds. Sequence analysis indicated that the clones encode polypeptides of approximately 48 kDa, both of which possess a signal peptide involved in directing secretion of the protein. Comparison of the two rice α-amylase amino acid sequence showed that they are 76% similar to each other, while showing 85% to 90% similarity with other cereal α-amylases. A comparison of eleven cereal α-amylases also revealed three new conserved regions (I′, II′, and IV′) not previously identified in the animal, bacterial, and fungal α-amylases. Regions I′ and IV′ are sites for intron splicing while region II' is probably involved in calcium binding. One of the rice a-amylase cDNAs, pOS103, encodes a protein that has two potential N-glycosylation sites, one in the signal peptide and the other in the mature portion of the protein. The cDNA clone, pOS137, encodes an α-amylase with a single glycosylation site in the signal peptide, suggesting that the mature OS137 isozyme is not glycosylated. Analysis of the expression of these genes in germinating rice seeds indicated that mRNA corresponding to pOS103 and pOS137 could be detected throughout a 48 h period of seed imbibition. RNA levels, however, were dramatically stimulated by treatment of embryoless half-seeds with exogenous GA3. Our results demonstrate that at least two forms of α-amylase are expressed in germinating rice seeds and that the expression of these genes is regulated by the phytohormone GA3.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1997-06-01
    Print ISSN: 1040-2519
    Topics: Biology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...