ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
  • 1
    Monograph available for loan
    Monograph available for loan
    New York [u.a.] : Springer
    Associated volumes
    Call number: 13028 ; M 93.0038/1 ; G 8103
    In: Advances in physical geochemistry
    Type of Medium: Monograph available for loan
    Pages: xii, 304 S.
    ISBN: 0387905308
    Series Statement: Advances in physical geochemistry 1
    Language: English
    Location: Upper compact magazine
    Location: Upper compact magazine
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Branch Library: GFZ Library
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-2932
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Acidic lakes and streams can be restored with base application (usually limestone) provided that the base does not wash out before the benefits of alkalization can be realized; liming soils of the adjoining watershed may be an alternative approach. This study was conducted to provide a scientific basis for soil liming. Plots (50 m2) with different limestone dosages (e.g. 0, 5, 10 or 15 Mg CaCO3 ha−1) were established on each of two different soils (a Spodosol and a Histosol) in the Woods Lake watershed of the Adirondack Park Region of New York, USA. Six months after soil liming much of the added limestone was still present in both the Spodosol and in the Histosol. Ten months after soil liming results indicated that: (1) soil pH increased (〉1 unit) but mostly in the top 1 cm; (2) net N mineralization increased from 9.6 to ca. 15 µg N g−1 d−1 and nitrification increased from 2.8 to ca. 8 µg N g−1 d−1; (3) denitrification was not affected (98 µg N g−1 d−1); (4) CO2 production potential decreased in the surface soil and as a function of limestone dosage (60 to 6 µmol g−1 d−1); and (5) soluble SO 4 2− concentrations in the Histosol were not affected (105 µmol L−1). Liming acidic forest soils with 〉5 Mg CaCO3 ha−1 may increase the soil's acid neutralizing capacity, which could provide long-term benefits for surface water acidification.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-515X
    Keywords: acidic precipitation ; adirondack mountains ; liming ; snowmelt ; episodic acidification ; beaver pond
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract During the fall of 1989 7.7Mg/ha of calcium carbonate was applied on two tributary catchments (40 ha and 60 ha) to Woods Lake, a small (25 ha) acidic headwater lake in the western Adirondack region of New York. Stream-water chemistry in both catchment tributaries responded immediately. Acid-neutralizing capacity (ANC) increased by more than 200 μeq/L in one of the streams and more than 1000 μeq/L in the other, from pre-liming values which ranged from −25 to +40 μeq/L. The increase in ANC was primarily due to increases in dissolved Ca2+ concentrations. Most of the initial response of the streams was due to the dissolution of calcite that fell directly into the stream channels and adjacent wetlands. A small beaver impoundment and associated wetlands were probably responsible for the greater response observed in one of the streams. After the liming of subcatchmentIV (60 ha), Ca2+ concentrations increased with increasing stream discharge in the stream during fall rain events, suggesting a contribution from calcite dissolved within the soil and transported to the stream by surface runoff or shallow interflow. Concentrations of other ions not associated with the calcite (e.g. Na+) decreased during fall rain events, presumably due to mixing of solute-rich base flow with more dilute shallow interflow. The strong relation between changes in Ca2+ and changes in NO 3 − concentrations during spring snowmelt, (r2 = 0.93, slope = 0.96, on an equivalent basis) suggests that both solutes had a common source in the organic horizon of the soil. Increases in NO 3 − concentrations during snowmelt were balanced by increases in Ca2+ that was released either directly from the calcite or from exchange sites, mitigating episodic acidification of the stream. However, high ambient NO 3 − concentrations and relatively low ambient Ca2+ concentrations in the stream during the spring caused the stream to become acidic despite the CaCO3 treatment. In stream WO2 (40ha), Ca2+ concentrations were much higher than in stream WO4 because of the dissolution of calcite which fell directly into the upstream beaver pond and its associated wetlands. Calcium concentrations decreased as both NO 3 − concentrations and stream discharge increased, due to the dilution of Ca-enriched beaver pond water by shallow interflow. Despite this dilution, Ca2+ concentrations were high enough to more than balance strong acid anion (SO 4 − , NO 3 − , Cl−) concentrations, resulting in a positive ANC in this stream throughout the year. These data indicate that liming of wetlands and beaver ponds is more effective than whole catchment liming in neutralizing acidic surface waters.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-515X
    Keywords: acid mitigation ; ILWAS model ; watershed liming ; watershed modeling
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Woods Lake, in the Adirondack Mountains of New York, was the site of the Experimental Watershed Liming Study (EWLS) in which base addition was investigated as a method for mitigation of lake acidity. In an effort to predict the duration of effects, the treatment was simulated using the Integrated Lake-Watershed Acidification Study (ILWAS) model. To simulate terrestrial liming, calcite was applied to treated subcatchments as a rapidly weathering mineral in the upper horizon. Soil solution and lake outlet chemistry showed a response to calcite addition within four months of the start of the simulation. Calcium concentrations, acid neutralizing capacities (ANC), and pH increased in the upper soil layer and aluminum concentrations decreased in the upper three soil layers (0–70 cm). The response of ANC was delayed in lower soil layers due to proton production associated with aluminum hydrolysis. Moreover, soil water pH in the third soil layer decreased in response to calcite treatment due to the displacement of hydrogen ions by calcium added to the exchange complex. Calcium concentrations, ANC and pH increased and aluminum concentrations decreased in the simulated lake outlet. The modeled effects of calcite treatment on the soil and lake outlet chemistry were not as great as field observations. This was, in part, attributed to the model representation of the watershed, which did not include streams, ponds, or wetlands located in the treated subcatchments. Calcite applied to these saturated areas in the field readily dissolved, supplying ANC to lake water. Additionally, incorporation of calcite into a thick organic layer in the model diminished the possibility of dissolution by contact with overland flow. Observed concentrations of calcium, ANC, and pH in the outlet decreased after high values in the two years after treatment. Although the model failed to match observed short-term data, it may simulate the long-term response as calcium is transported through the soil. A long-term simulation of the model suggests that effects of base treatment will persist for at least 50 years.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-515X
    Keywords: acid mitigation ; exchangeable chemistry ; soil acidity ; soil chemistry ; watershed liming
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract The effects of watershed liming on the exchange complex of a forest soil were investigated at Woods Lake, in the west-central Adirondack Park, New York. Attempts to neutralize lake acidity via direct application of calcite during the 1980"s were short-lived due to a short hydraulic retention time. The Experimental Watershed Liming Study (EWLS) was initiated to investigate watershed base addition as a potentially more long-term strategy for mitigation of lake acidity. In this paper we discuss the changes in the exchangeable soil complex which occurred in response to the calcite addition and attempt a mass balance for calcite applied to the watershed. An extensive sampling program was initiated for the watershed study. Soil samples were collected from pits prior to and in the two years following treatment to evaluate changes in soil chemistry. Calcite addition significantly altered the exchange complex in the organic horizon. Increases in pH caused deprotonation of soil organic matter and increases in cation exchange capacity, providing additional exchange sites for the retention of added calcium. Exchangeable acidity decreased to very low values, allowing the base saturation of upper organic horizons to increase to nearly 100 percent. Post-treatment sampling found that approximately 48 percent of the calcite remained undissolved in the soil"s Oe horizon two years later. Dissolution of the calcite was affected by field moisture conditions, with greater dissolution in wetter areas of the watershed. Mass balances calculated for calcium applied to the watershed suggest that only 4 percent of the calcium was removed through the lake outlet. Approximately 96 percent of the calcium applied remained within the watershed; as undissolved calcite, on soil exchange sites or stored in the vegetation, groundwater or surface waters of the watershed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-515X
    Keywords: acidic deposition ; surficial geology ; flow paths
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract The chemistry of lakes and streams within the North Branch of the Moose River is strongly correlated with the nature and distrubution of geologic materials in the watershed. The dominance of thin glacial till and granitic gneiss bedrock in the region north and east of Big Moose Lake results in a geologically sensitive terrain that is characterized by surface water with low alkalinity and chemical compositions only slightly modified from ambient precipitation. In contrast, extensive deposits of thick glacial till and stratified drift in the lower part of the system (e.g. Moss-Cascade valley) allow for much infiltration of precipitation to the groundwater system where weathering reactions increase alkalinity and significantly alter water chemistry. The hypothesis that surficial geology controls the chemistry of surface waters in the Adirondacks holds true for 70 percent of the Moose River watershed. Exceptions include the Windfall Pond subcatchment which is predominantly covered by thin till, yet has a high surface water alkalinity due to the presence of carbonate-bearing bedrock. The rapid reaction rates of carbonate minerals allow for complete acid neutralization to occur despite the short residence time of water moving through the system. Another important source of alkalinity in at least one of the subcatchments is sulfate reduction. This process appears to be most important in systems containing extensive peat deposits. An analysis of only those subcatchments controlled by the thickness of surficial sediments indicates that under current atmospheric loadings watersheds containing less than 3 percent thick surficial sediments will be acidic while those with up to 12 percent will be extremely sensitive to acidification and only those with over 50 percent will have a low sensitivity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Surveys in geophysics 1 (1973), S. 123-145 
    ISSN: 1573-0956
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract In this paper, we review the current state of knowledge about the acceleration of the Earth's spin, and about the closely related acceleration of the Moon. It is now established at a high confidence level that the acceleration of the Moon, when taken respect to Universal time, has changed by a large amount, and that it has even changed sign, within historic times. This almost certainly means that the acceleration of the Earth's spin has also changed by a large amount. At present we do not have enough information to say whether the changes have been in the contributions from tidal friction, in the contributions that do not arise from tidal friction, or both. Further, we do not know yet whether or not the variations in the Earth's rotation can account for the observed fluctuations in the longitudes of the Sun, the Moon, and the planets.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-2932
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Acidic lakes and streams can be restored with base application (usually limestone) provided that the base does not wash out before the benefits of alkalization can be realized; liming soils of the adjoining watershed may be an alternative approach. This study was conducted to provide a scientific basis for soil liming. Plots (50 m2) with different limestone dosages (e.g. 0, 5, 10 or 15 Mg CaCO3 ha−1) were established on each of two different soils (a Spodosol and a Histosol) in the Woods Lake watershed of the Adirondack Park Region of New York, USA. Six months after soil liming much of the added limestone was still present in both the Spodosol and in the Histosol. Ten months after soil liming results indicated that: (1) soil pH increased (〉 1 unit) but mostly in the top 1 cm; (2) net N mineralization increased from 9.6 to ca. 15 µg N g−1 d −1 and nitrification increased from 2.8 to ca. 8 µg N g−1 d−1; (3) denitrification was not affected (98 µg N g−1 d−1);(4) CO2 production potential decreased in the surface soil and as a function of limestone dosage (60 to 6 µmol g−1 d−1); and (5) soluble SO inf4 sup2− concentrations in the Histosol were not affected (105 µmol L−1). Liming acidic forest soils with 〉 5 Mg CaCO3 ha−1 may increase the soil's acid neutralizing capacity, which could provide long-term benefits for surface water acidification.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-2932
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Three lake-watersheds in the Adirondack Mountains of New York State, underlain by similar granitic bedrock and receiving similar levels of acidic deposition, were found to have very different surface water alkalinities. The chemical differences appear to be due to differences in the unconsolidated surficial materials in the basins. Woods Lake watershed (mean lake outlet pH of 4.7) is covered by thin till with many interspersed bedrock outcrops. The thinness of these surficial deposits (average depth 2 m) limits the amount of deep percolation of water and thus contact with alkalinity-producing inorganic horizons. In contrast, Panther Lake watershed (mean lake outlet pH of 6.2) is covered by thick glacial till (average depth 24 m). Here more of the precipitation comes in contact with the alkalinity-producing materials. Sagamore Lake watershed is much larger and has areas of both thick and thin deposits and lake outlet pH values intermediate to those of Woods and Panther lakes. The soils in all three watersheds are dominated by quartz, potassium feldspar and sodic plagioclase with minor amounts of hornblende and other heavy minerals. The dominant clay mineral is vermiculite. Chemical evidence suggests the present rate of mineral weathering is less than the long-term rate in Woods Lake watershed while in Panther, the present rate may have increased relative to the long-term rate.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 157 (1993), S. 201-208 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: When monocytes are activated with endotoxin (lipopolysaccharide [LPS]), they make and release several mediators, including interleukin-1β (IL-1β). This study was undertaken to investigate the role of glucose in IL-1β production by these cells. IL-1β was produced in a dose-dependent manner to glucose concentration in the culture medium. The uptake of (3H)2-deoxyglucose in monocytes was stimulated by LPS 1,554% after 10 minutes, 6,095% after 2 hours, then gradually declined after 4 hours of incubation. The inhibition of the uptake of (3H)2-deoxyglucose by either 10 μM cytochaiasin B or phloretin, added at the time of monocyte activation, was accompanied by significant reduction in ATP/ADP ratio and the inhibition of the production of IL-1β by activated monocytes. The synthesis of total protein did not change in monocytes activated in the absence of glucose in the culture medium, nor in the presence of either 10 μM cytochalasin B or phloretin. The export of IL-1β from LPS-activated monocytes was not inhibited by either 10 μM cytochalasin B or phloretin, nor in the absence of glucose in the culture medium. These data suggest that (1) glucose is required for LPS-induced IL-1β production by monocytes; (2) glucose is the major source of ATP for IL-1β production; (3) glucose transporter (GLUT 1) does not control the export of IL-1β. © 1993 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...