ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-02-06
    Electronic ISSN: 1932-6203
    Topics: Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: Experiments are sent to space laboratories in order to take advantage of the low-gravity environment. However, it is crucial to appreciate the distinction between the real microgravity environment and "weightlessness" or "simulated microgravity". The microgravity in space laboratories may be of much smaller magnitude than the gravitational acceleration on earth. However, it is not zero, nor even one microg (defined as 1e-6 earth gravity). Moreover, the orientation is not uniaxial, as on earth. The net acceleration that acts on a space experiment arises from, e.g., orbital mechanics, atmospheric drag, and thruster firings, and it can act on the experiments in gravity-like ways. In essence, a well-defined, stable 1 g acceleration on the earth's surface is substituted for a complex array of dynamically changing accelerations with ever-changing frequency content, magnitude and direction. This paper will show measured accelerations on the Shuttle from launch to orbit, as well as the latest measurements on the International Space Station (ISS). The ISS data presented here represent over 34,790 hours of data obtained from June 2002 to April 2003 during Increments 5 and 6 of the ISS construction cycle. The quasisteady acceleration level on the ISS has been measured to be on the order of a few microg during time allotted to microgravity mode. The vibratory acceleration environment spans a rich spectrum from 0.01-300 Hz.
    Keywords: Aerospace Medicine
    Type: Journal of gravitational physiology : a journal of the International Society for Gravitational Physiology (ISSN 1077-9248); Volume 11; 1; 1-10
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: This study is concerned with the effects of g-jitter, the residual acceleration aboard spacecraft, on selected classes of materials processes. In particular, the anticipated acceleration environment aboard Space Station Freedom (SSF) and its potential effects are analyzed, but the topic is covered with a sufficient level of generality as to apply to other processes and to other vehicles as well. Some of the key findings of this study include: The present acceleration specifications for SSF are inadequate to assure a quality level low-g environment. The local g vector orientation is an extremely sensitive parameter for certain key processes, but can not be controlled to within the desired tolerance. Therefore, less emphasis should be placed upon achieving a tight control of SSF attitude, but more emphasis should be focused on reducing the overall level of the g-jitter magnitude. Melt-based crystal growth may not be successfully processed in the relatively noisy environment of a large inhabited space structure. Growth from vapor or from solution appears more favorable. A smaller space structure and/or a free flyer can provide better alternatives in terms of g-jitter considerations. A high priority (including budgetary) should be given to coordinated efforts among researchers, SSF designers, and equipment contractors, to develop practical experiment-specific sensitivity requirements. Combined focused numerical simulations and experiments with well-resolved acceleration measurements should be vigorously pursued for developing reliable experiment-specific sensitivity data. Appendices provide an extensive cross-referenced bibliography, a discussion of the merits offered by g-jitter analysis techniques, as well as definitions of relevant nondimensional quantities and a brief description of available accelerometry hardware.
    Keywords: MATERIALS PROCESSING
    Type: NASA-TM-103775 , E-6042 , NAS 1.15:103775
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-05
    Description: A tightly knit numerical/experimental collaboration among the NASA Ames Research Center, NASA Glenn Research Center, and Payload Systems, Inc., was formed to analyze cell culturing systems for the International Space Station. The Cell Culture Unit is a facility scheduled for deployment on the space station by the Cell Culture Unit team at Ames. The facility houses multiple cell specimen chambers (CSCs), all of which have inlets and outlets to allow for replenishment of nutrients and for waste removal. For improved uniformity of nutrient and waste concentrations, each chamber has a pair of counterrotating stir bars as well. Although the CSC can be used to grow a wide variety of organic cells, the current study uses yeast as a model cell. Previous work identified groundbased protocols for perfusion and stirring to achieve yeast growth within the CSC that is comparable to that for yeast cultures grown in a shaken Ehrlenmeyer flask.
    Keywords: Aerospace Medicine
    Type: Research and Technology 2002; NAA/TM-2003-211990
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Many materials processing and fluids physics experiments conducted in a microgravity environment require knowledge of the orientation of the low-frequency acceleration vector. This need becomes especially acute for space experiments such as directional solidification of a molten semiconductor, which is extremely sensitive to orientation and may involve tens of hours of operations of a materials furnace. These low-frequency acceleration data have been measured for many Shuttle missions with the Orbital Acceleration Research Experiment. Previous attempts at using fluid chambers for acceleration measurements have met with limited success due to pointing and vehicle attitude complications. An acceleration direction indicator is described, which is comprised of two orthogonal short cylinders of fluid, each with a small bubble. The motion and the position of the bubble within the chamber will indicate the direction of the acceleration experienced at the sensor location. The direction of the acceleration vector may then be calculated from these data. The frequency response of such an instrument may be tailored for particular experiments with the proper selection of fluid and gas parameters, surface type, and geometry. A three-dimensional system for sensing and displaying the low-frequency acceleration direction via an innovative technique described in this paper has advantages in terms of size, mass, and power compared with electronic instrumentation systems.
    Keywords: Spacecraft Instrumentation and Astrionics
    Type: NASA/TM-2000-209931 , E-12175 , NAS 1.15:209931 , AIAA Paper 2000-0570 , Aerospace Sciences; Jan 10, 2000 - Jan 13, 2000; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: When gravitational unloading occurs upon entry to space, astronauts experience a major shift in the distribution of their bodily fluids, with a net headward movement. Measurements have shown that intraocular pressure spikes, and there is a strong suspicion that intracranial pressure also rises. Some astronauts in both short- and long-duration spaceflight develop visual acuity changes, which may or may not reverse upon return to earth gravity. To date, of the 36 U.S. astronauts who have participated in long-duration space missions on the International Space Station, 15 crew members have developed minor to severe visual decrements and anatomical changes. These ophthalmic changes include hyperopic shift, optic nerve distension, optic disc edema, globe flattening, choroidal folds, and elevated cerebrospinal fluid pressure. In order to understand the physical mechanisms behind these phenomena, NASA is developing an integrated model that appropriately captures whole-body fluids transport through lumped-parameter models for the cerebrospinal and cardiovascular systems. This data feeds into a finite element model for the ocular globe and retrobulbar subarachnoid space through time-dependent boundary conditions. Although tissue models and finite element representations of the corneo-scleral shell, retina, choroid and optic nerve head have been integrated to study pathological conditions such as glaucoma, the retrobulbar subarachnoid space behind the eye has received much less attention. This presentation will describe the development and scientific foundation of our holistic model.
    Keywords: Aerospace Medicine
    Type: GRC-E-DAA-TN-5986 , 22nd International Workshop on Computational Mechanics of Materials; Sep 26, 2012; Baltimore, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-12
    Description: A mission to Mars of several years duration requires more demanding standards for all onboard instruments than a 6-month mission to the Moon or the International Space Station. In Part 1, we evaluated generic technologies and suitability to NASA needs. This prior work considered crew safety, device maturity and flightworthiness, resource consumption, and medical value. In Part 2, we continue the study by assessing the current marketplace for reliable Point-of-Care diagnostics. The ultimate goal of this project is to provide a set of objective analytical tools to suggest efficient strategies for reaching specific medical targets for any given space mission as program needs, technological development, and scientific understanding evolve.
    Keywords: Aerospace Medicine
    Type: NASA/TM-2010-215845/PART2 , E-17108-1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-12
    Description: The changes in the scope of NASA s mission in the coming decade are profound and demand nimble, yet insightful, responses. On-board clinical and environmental diagnostics must be available for both mid-term lunar and long-term Mars exploration missions in an environment marked by scarce resources. Miniaturization has become an obvious focus. Despite solid achievements in lab-based devices, broad-based, robust tools for application in the field are not yet on the market. The confluence of rapid, wide-ranging technology evolution and internal planning needs are the impetus behind this work. This report presents an analytical tool for the ongoing evaluation of promising technology platforms based on mission- and application-specific attributes. It is not meant to assess specific devices, but rather to provide objective guidelines for a rational down-select of general categories of technology platforms. In this study, we have employed our expertise in the microgravity operation of fluidic devices, laboratory diagnostics for space applications, and terrestrial research in biochip development. A rating of the current state of technology development is presented using the present tool. Two mission scenarios are also investigated: a 30-day lunar mission using proven, tested technology in 5 years; and a 2- to 3-year mission to Mars in 10 to 15 years.
    Keywords: Man/System Technology and Life Support
    Type: NASA/TM-2010-215845/PART1 , E-17108
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-13
    Description: Visual Impairment and Intracranial Pressure (VIIP) syndrome is a major health concern for long-duration space missions. Currently, it is thought that a cephalad fluid shift in microgravity causes elevated intracranial pressure (ICP) that is transmitted along the optic nerve sheath (ONS). We hypothesize that this in turn leads to alteration and remodeling of connective tissue in the posterior eye which impacts vision. Finite element (FE) analysis is a powerful tool for examining the effects of mechanical loads in complex geometries. Our goal is to build a FE analysis framework to understand the response of the lamina cribrosa and optic nerve head to elevations in ICP in VIIP.
    Keywords: Aerospace Medicine
    Type: GRC-E-DAA-TN20366 , 2015 Human Research Program Investigators'' Workshop; Jan 13, 2015 - Jan 15, 2015; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-13
    Description: No abstract available
    Keywords: Aerospace Medicine
    Type: GRC-E-DAA-TN20063 , 2015 Human Research Program Investigators'' Workshop; Jan 13, 2015 - Jan 15, 2015; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...