ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  J. Geophys. Res., Warszawa, Polish Geothermal Association, vol. 79, no. 7, pp. 2557-2567, pp. B05406, (ISSN: 1340-4202)
    Publication Date: 1974
    Keywords: Plate tectonics ; Modelling ; Review article ; JGR
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-04-04
    Description: Bends in volcanic hotspot lineaments, best represented by the large elbow in the Hawaiian-Emperor chain, were thought to directly record changes in plate motion. Several lines of geophysical inquiry now suggest that a change in the locus of upwelling in the mantle induced by mantle dynamics causes bends in hotspot tracks. Inverse modeling suggests that although deep flow near the core-mantle boundary may have played a role in the Hawaiian-Emperor bend, capture of a plume by a ridge, followed by changes in sub-Pacific mantle flow, can better explain the observations. Thus, hotspot tracks can reveal patterns of past mantle circulation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tarduno, John -- Bunge, Hans-Peter -- Sleep, Norm -- Hansen, Ulrich -- New York, N.Y. -- Science. 2009 Apr 3;324(5923):50-3. doi: 10.1126/science.1161256.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth and Environmental Sciences, University of Rochester, Rochester, NY 14627, USA. john@earth.rochester.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19342579" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1990-06-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sleep, N -- New York, N.Y. -- Science. 1990 Jun 1;248(4959):1141.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17733388" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-01-25
    Description: The Archean Era of the Earth is not a direct analog of the present tectonics of Venus. In this regard, it is useful to review the state of the Archean Earth. Most significantly, the temperature of the adiabatic interior of the Earth was 200 to 300 C hotter than the current temperature. Preservation biases limit what can be learned from the Archean record. Archean oceanic crust, most of the planetary surface at any one time, has been nearly all subducted. More speculatively, the core of the Earth has probably cooled more slowly than the mantle. Thus the temperature contrast above the core-mantle boundary and the vigor of mantle plumes has increased with time on the Earth. The most obvious difference between Venus and the present Earth is the high surface temperature and hence a low effective viscosity of the lithosphere. In addition, the temperature contrast between the adiabatic interior and the surface, which drives convection, is less on Venus than on the Earth. It appears that the hot lithosphere enhanced tectonics on the early Venus significantly enough that its interior cooled faster than the Earth's. The best evidence for a cool interior of Venus comes from long wavelength gravity anomalies. The low interior temperatures retard seafloor spreading on Venus. The high surface temperatures on Venus enhance crustal deformation. That is, the lower crust may become ductile enough to permit significant flow between the upper crust and the mantle. There is thus some analogy to modern and ancient areas of high heat flow on the Earth. Archean crustal blocks typically remained stable for long intervals and thus overall are not good analogies to the deformation style on Venus.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., Abstracts for the Venus Geoscience Tutorial and Venus Geologic Mapping Workshop; p 46
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 409 (2001), S. 1083-1091 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Earth is over 4,500 million years old. Massive bombardment of the planet took place for the first 500–700 million years, and the largest impacts would have been capable of sterilizing the planet. Probably until 4,000 million years ago or later, occasional impacts might have heated the ocean ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillan Magazines Ltd.
    Nature 395 (1998), S. 788-791 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The geology of northern and central Africa is characterized by broad plateaux, narrower swells and volcanism occurring from ∼45 Myr ago to the present. The greatest magma volumes occur on the 〉1,000-km-wide Ethiopian and east African plateaux, which are transected by the Red Sea, ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-24
    Description: The thermal evolution of Mars is governed by subsolidus mantle convection beneath a thick lithosphere. Models of the interior evolution are developed by parameterizing mantle convective heat transport in terms of mantle viscosity, the superadiabatic temperature rise across the mantle, and mantle heat production. Geological, geophysical, and geochemical observations of the composition and structure of the interior and of the timing of major events in Martian evolution are used to constrain the model computations. Such evolutionary events include global differentiation, atmospheric outgassing, and the formation of the hemispherical dichotomy and Tharsis. Numerical calculations of fully three-dimensional, spherical convection in a shell the size of the Martian mantle are performed to explore plausible patterns of Martian mantel convection and to relate convective features, such as plumes, to surface features, such as Tharsis. The results from the model calculations are presented.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: In: Mars (A93-27852 09-91); p. 147-183.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-08-31
    Description: The thermal evolution of Mars is governed by subsolidus mantle convection beneath a thick lithosphere. Models of the interior evolution are developed by parameterizing mantle convective heat transport in terms of mantle viscosity, the superadiabatic temperature rise across the mantle, and mantle heat production. Geological, geophysical, and geochemical observations of the compositon and structure of the interior and of the timing of major events in Martian evolution are used to constrain the model computations. Such evolutionary events include global differentiation, atmospheric outgassing, and the formation of the hemispherical dichotomy and Tharsis. Numerical calculations of fully three-dimensional, spherical convection in a shell the size of the Martian mantle are performed to explore plausible patterns of Martian mantel convection and to relate convective features, such as plumes, to surface features, such as Tharsis. The results from the model calculations are presented.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: NAS 1.26:188095 , NASA-CR-188095
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-08-31
    Description: It has recently been suggested that a reported spike in seawater (87)Sr/(86)Sr at the K-T boundary is the signature of an impact-generated acid deluge. However, the amount of acid required is implausibly large. Some about 3 x 10 to the 15th power moles of Sr must be weathered from silicates to produce the inferred Sr spike. The amount of acid required is at least 100 and probably 1000 times greater. Production of 3 x 10 to the 18th power moles of NO is clearly untenable. The atmosphere presently contains only 1.4 x 10 to the 20th power moles of N-sub 2 and 3.8 x 10 to the 19th power moles of O sub 2 If the entire atmosphere were shocked to 2000 K and cooled within a second, the total NO produced would be about 3 x 10 to the 18th power moles. This is obviously unrealistic. A (still to short) cooling time of 10th to the 3rd power sec reduces NO production by an order of magnitude. In passing, we note that if the entire atmosphere had in fact been shocked to 2000 K, acid rain would have been the least of a dinosaur's problems. Acid rain as a mechanism poses poses other difficulties. Recently deposited carbonates would have been most susceptable to acid attack. The researchers' preferred explanation is simply increased continental erosion following ecological trauma, coupled with enchanced levels of CO-sub 2.
    Keywords: ENVIRONMENT POLLUTION
    Type: Lunar and Planetary Inst., Global Catastrophes in Earth History: An Interdisciplinary Conference on Impacts, Volcanism, and Mass Mortality; p 223-224
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-08-31
    Description: The tectonic style of Mars is dominated by vertical motion, perhaps more than any of the terrestrial planets. The imprint of this tectonic activity has left a surface widely faulted even though younger volcanism has masked the expression of tectonism in many places. Geological activity associated with the Tharsis and, to a lesser extent, Elysium provinces is responsible for a significant portion of this faulting, while the origins of the remaining features are enigmatic in many cases. The origin and evolution of the Tharsis and Elysium provinces, in terms of their great elevation, volcanic activity, and tectonic style, has sparked intense debate over the last fifteen years. Central to these discussions are the relative roles of structural uplift and volcanic construction in the creation of immense topographic relief. For example, it is argued that the presence of very old and cratered terrain high on the Tharsis rise, in the vicinity of Claritas Fossae, points to structural uplift of an ancient crust. Others have pointed out, however, that there is no reason that this terrain could not be of volcanic origin and thus part of the constructional mechanism.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: NASA, Washington, Reports of Planetary Geology and Geophysics Program, 1986; p 484-486
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...