All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • 1
    Publication Date: 2005
    Description: Earthquake scarps associated with recent historical events have been found on the floor of the Sea of Marmara, along the North Anatolian Fault (NAF). The MAuto-Regressive Moving Average-processRASCARPS cruise using an unmanned submersible (ROV) provides direct observations to study the fine-scale morphology and geology of those scarps, their distribution, and geometry. The observations are consistent with the diversity of fault mechanisms and the fault segmentation within the north Marmara extensional step-over, between the strike-slip Ganos and Izmit faults. Smaller strike-slip segments and pull-apart basins alternate within the main step-over, commonly combining strike-slip and extension. Rapid sedimentation rates of 1-3 mm/yr appear to compete with normal faulting components of up to 6 mm/yr at the pull-apart margins. In spite of the fast sedimentation rates the submarine scarps are preserved and accumulate relief. Sets of youthful earthquake scarps extend offshore from the Ganos and Izmit faults on land into the Sea of Marmara. Our observations suggest that they correspond to the submarine ruptures of the 1999 Izmit (Mw 7.4) and the 1912 Ganos (Ms 7.4) earthquakes. While the 1999 rupture ends at the immediate eastern entrance of the extensional Cinarcik Basin, the 1912 rupture appears to have crossed the Ganos restraining bend into the Sea of Marmara floor for 60 km with a right-lateral slip of 5 m, ending in the Central Basin step-over. From the Gulf of Saros to Marmara the total 1912 rupture length is probably about 140 km, not 50 km as previously thought. The direct observations of submarine scarps in Marmara are critical to defining barriers that have arrested past earthquakes as well as defining a possible segmentation of the contemporary state of loading. Incorporating the submarine scarp evidence modifies substantially our understanding of the current state of loading along the NAF next to Istanbul. Coulomb stress modeling shows a zone of maximum loading with at least 4-5 m of slip deficit encompassing the strike-slip segment 70 km long between the Cinarcik and Central Basins. That segment alone would be capable of generating a large-magnitude earthquake (Mw 7.2). Other segments in Marmara appear less loaded. FROTH
    Keywords: Earthquake hazard ; Turkey ; Fault zone ; NAF ; G3 ; G-cubed ; AGU ; Ucarkus ; Lepinay ; Cagatay ; Cakir ; Structural geology ; 7230 ; Seismology: ; Seismicity ; and ; tectonics ; Oezalaybey ; Ozalaybey ; Lefevre ; 7223 ; Earthquake ; interaction, ; forecasting, ; and ; prediction ; morphology ; submersible ; 8110 ; Tectonophysics: ; Continental ; tectonics: ; general ; 1766 ; 1894 ; 1912 ; 1999 ; Earthquake
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-02-22
    Description: We develop a kinematic model for the transition from subduction beneath the North Island, New Zealand, to strike-slip in the South Island, constrained by GPS velocities and active fault slip data. To interpret these data, we use an approach that inverts the kinematic data for poles of rotation of tectonic blocks and the degree of interseismic coupling on faults in the region. Convergence related to the Hikurangi subduction margin becomes very low offshore of the northern South Island, indicating that in this region the majority of the relative plate motion has been transferred onto faults within the upper plate, as suggested by previous studies. This result has implications for understanding the likely extent of subduction interface earthquake rupture in central New Zealand. Easterly trending strike slip faults (such as the Boo Boo fault) are the key features that facilitate the transfer of strike-slip motion from the northern South Island faults further north into the southern North Island and onto the Hikurangi subduction thrust. Our results also indicate that the transition from rapid forearc rotation adjacent to the Hikurangi subduction margin to a strike-slip dominated plate boundary (with negligible vertical-axis rotation) in the South Island occurs via a crustal-scale hinge or kink in the upper plate, compatible with paleomagnetic and structural geological data. Despite the ongoing tectonic evolution of the central New Zealand region, our study highlights a remarkable consistency between data sets spanning decades (GPS), thousands of years (active faulting data), and millions of years (paleomagnetic data and bedrock structure).
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-10-17
    Description: A moment magnitude (Mw) 6.2 earthquake struck beneath the outer suburbs of Christchurch, New Zealand's second largest city, on 22 February 2011 local time. The Christchurch earthquake was the deadliest in New Zealand since the 1931 Mw 7.8 Hawkes Bay earthquake and the most expensive in New Zealand's recorded history. The effects of the earthquake on the region's population and infrastructure were severe including 181 fatalities, widespread building damage, liquefaction and landslides. The Christchurch earthquake was an aftershock of the Mw 7.1 Darfield Earthquake of September 2010, occurring towards the eastern edge of the aftershock zone. This was a low recurrence earthquake for New Zealand and occurred on a fault unrecognised prior to the Darfield event. Geodetic and seismological source models show that oblique-reverse slip occurred along a northeast–southwest-striking fault dipping southeast at c. 69°, with maximum slip at 3–4 km depth. Ground motions during the earthquake were unusually large at near-source distances for an earthquake of its size, registering up to 2.2 g (vertical) and 1.7 g (horizontal) near the epicentre and up to 0.8 g (vertical) and 0.7 g (horizontal) in the city centre. Acceleration response spectra exceeded 2500 yr building design codes and estimates based on standard New Zealand models. The earthquake was associated with high apparent stress indicative of a strong fault. Furthermore, rupture in an updip direction towards Christchurch likely led to strong directivity effects in the city. Site effects including long period amplification and near-surface effects also contributed to the severity of ground motions.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...