All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • 1
    In:  Meteorology and Atmospheric Physics, 73
    Publication Date: 2004-09-21
    Type: paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Meteorology and atmospheric physics 73 (2000), S. 127-138 
    ISSN: 1436-5065
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geography , Physics
    Notes: Summary Conceptual models of blocking structures are constructed by reducing the two-dimensional atmospheric vorticity field to a few point vortices. The flow is assumed to be barotropic and divergence-free, and a blocking event is represented by a point vortex dipole. The focus is here on the motion of the blocking dipole under the influence of the zonal mean flow. This is modelled in three different ways: A dipole embedded in a latitude-dependent zonal mean flow exhibits neutrally stable oscillations; their period is estimated analytically. A cyclonic point vortex approaching from upstream can either pass the dipole or break it up, so that an Ω-shaped pattern of three vortices emerges. The stationarity of a blocking between two troughs is modelled by four point vortices. These low-order point vortex models are compared with the dynamics of real blockings in case studies. Despite their high degree of simplification, those models reproduce the kinematics of blocking events properly. This results from the discretization of the flow to its actual physical states, the vortices, in contrast to the common, purely mathematical discretization to grid points. Thus, point vortex dynamics are proposed to be a powerful completion of continuous fluid dynamics in explaining blocking events.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-04-09
    Description: The objective of this study is the scale dependent evaluation of precipitation forecasts of the Lokal-Modell (LM) from the German Weather Service in relation to dynamical and cloud parameters. For this purpose the newly designed Dynamic State Index (DSI) is correlated with clouds and precipitation. The DSI quantitatively describes the deviation and relative distance from a stationary and adiabatic solution of the primitive equations. A case study and statistical analysis of clouds and precipitation demonstrates the availability of the DSI as a dynamical threshold parameter. This confirms the importance of imbalances of the atmospheric flow field, which dynamically induce the generation of rainfall.
    Print ISSN: 1680-7340
    Electronic ISSN: 1680-7359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union (EGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...