ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-12
    Description: The NASA Digital Astronaut Project s (DAP) objective is to provide computational tools that support research of the physiological response to low gravity environments and analyses of how changes cause health and safety risks to the astronauts and to the success of the mission. The spaceflight risk associated with muscle atrophy is impaired performance due to reduced muscle mass, strength and endurance. Risks of early onset of osteoporosis and bone fracture are among the spaceflight risks associated with loss of bone mineral density. METHODS: Tools under development include a neuromuscular model, a biomechanical model and a bone remodeling model. The neuromuscular model will include models of neuromuscular drive, muscle atrophy, fiber morphology and metabolic processes as a function of time in space. Human movement will be modeled with the biomechanical model, using muscle and bone model parameters at various states. The bone remodeling model will allow analysis of bone turnover, loss and adaptation. A comprehensive trade study was completed to identify the current state of the art in musculoskeletal modeling. The DAP musculoskeletal models will be developed using a combination of existing commercial software and academic research codes identified in the study, which will be modified for use in human spaceflight research. These individual models are highly dependent upon each other and will be integrated together once they reach sufficient levels of maturity. ANALYSES: The analyses performed with these models will include comparison of different countermeasure exercises for optimizing effectiveness and comparison of task requirements and the state of strength and endurance of a crew member at a particular time in a mission. DISCUSSION: The DAP musculoskeletal model has the potential to complement research conducted on spaceflight induced changes to the musculoskeletal system. It can help with hypothesis formation, identification of causative mechanisms and supplementing small data samples.
    Keywords: Aerospace Medicine
    Type: E-17763
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Space flight impacts human physiology in many ways, the most immediate being the marked cephalad (headward) shift of fluid upon introduction into the microgravity environment. This physiological response to microgravity points to the redistribution of blood and interstitial fluid as a major factor in the loss of venous tone and reduction in heart muscle efficiency which impact astronaut performance. In addition, researchers have hypothesized that a reduction in astronaut visual acuity, part of the Visual Impairment and Intracranial Pressure (VIIP) syndrome, is associated with this redistribution of fluid. VIIP arises within several months of beginning space flight and includes a variety of ophthalmic changes including posterior globe flattening, distension of the optic nerve sheath, and kinking of the optic nerve. We utilize a suite of lumped parameter models to simulate microgravity-induced fluid redistribution in the cardiovascular, central nervous and ocular systems to provide initial and boundary data to a 3D finite element simulation of ocular biomechanics in VIIP. Specifically, the lumped parameter cardiovascular model acts as the primary means of establishing how microgravity, and the associated lack of hydrostatic gradient, impacts fluid redistribution. The cardiovascular model consists of 16 compartments, including three cerebrospinal fluid (CSF) compartments, three cranial blood compartments, and 10 thoracic and lower limb blood compartments. To assess the models capability to address variations in physiological parameters, we completed a formal uncertainty and sensitivity analysis that evaluated the relative importance of 42 input parameters required in the model on relative compartment flows and compartment pressures. Utilizing the model in a pulsatile flow configuration, the sensitivity analysis identified the ten parameters that most influenced each compartment pressure. Generally, each compartment responded appropriately to parameter variations associated with itself and adjacent compartments. However, several unexpected interactions between components, such as between the choroid plexus and the lower capillaries, were found, and are due to simplifications in the formulation of the model. The analysis illustrates that highly influential parameters and those that have unique influences within the model formulation must be tightly controlled for successful model application.
    Keywords: Aerospace Medicine
    Type: GRC-E-DAA-TN29818 , 2016 NASA Human Research Program Investigators'' Workshop (HRP IWS 2016); 8-11 Feb. 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Visual Impairment and Intracranial Pressure (VIIP) syndrome is a major health concern for long-duration space missions. Currently, it is thought that a cephalad fluid shift in microgravity causes elevated intracranial pressure (ICP) that is transmitted along the optic nerve sheath (ONS). We hypothesize that this in turn leads to alteration and remodeling of connective tissue in the posterior eye which impacts vision. Finite element (FE) analysis is a powerful tool for examining the effects of mechanical loads in complex geometries. Our goal is to build a FE analysis framework to understand the response of the lamina cribrosa and optic nerve head to elevations in ICP in VIIP. To simulate the effects of different pressures on tissues in the posterior eye, we developed a geometric model of the posterior eye and optic nerve sheath and used a Latin hypercubepartial rank correlation coef-ficient (LHSPRCC) approach to assess the influence of uncertainty in our input parameters (i.e. pressures and material properties) on the peak strains within the retina, lamina cribrosa and optic nerve. The LHSPRCC approach was repeated for three relevant ICP ranges, corresponding to upright and supine posture on earth, and microgravity [1]. At each ICP condition we used intraocular pressure (IOP) and mean arterial pressure (MAP) measurements of in-flight astronauts provided by Lifetime Surveillance of Astronaut Health Program, NASA Johnson Space Center. The lamina cribrosa, optic nerve, retinal vessel and retina were modeled as linear-elastic materials, while other tissues were modeled as a Mooney-Rivlin solid (representing ground substance, stiffness parameter c1) with embedded collagen fibers (stiffness parameters c3, c4 and c5). Geometry creationmesh generation was done in Gmsh [2], while FEBio was used for all FE simulations [3]. The LHSPRCC approach resulted in correlation coefficients in the range of 1. To assess the relative influence of the uncertainty in an input parameter on the peak strains, we ranked and then normalized these coefficients, considering that normalized values 0.5 implied a substantial influence on the range of the peak strains in the optic nerve head (ONH). IOP and ICP were found to have a major influence on the peak strains in the ONH, as did optic nerve and LC stiffness. Interestingly, the stiffness of the sclera far from the scleral canal did not have a large influence on peak strains in ONH tissues; however, the collagen fiber stiffness in the peripapillary sclera and annular ring both influenced the peak strains within the ONH. We have created a physiologically relevant model that incorporated collagen fibers to study the effects of elevated ICP. Elevated ICP resulted in strains in the optic nerve that are not predicted to occur on earth: the upright or supine conditions. We found that IOP, ICP, lamina cribrosa stiffness and optic nerve stiffness had the highest association with these extreme strains in the ONH. These extreme strains may activate mechanosensitive cells that induce tissue remodeling and are a risk factor for the development of VIIP.
    Keywords: Aerospace Medicine
    Type: GRC-E-DAA-TN29711 , NASA Human Research Program Investigators Workshop (HRP IWS 2016); 8-11 Feb. 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Purpose: Visual Impairment and Intracranial Pressure (VIIP) syndrome is a new and significant health concern for long-duration space missions. Its etiology is unknown, but is thought to involve elevated intracranial pressure (ICP)that induces connective tissue changes and remodeling in the posterior eye (Alexander et al. 2012). Here we study the acute biomechanical response of the lamina cribrosa (LC) and optic nerve to elevations in ICP utilizing finite element (FE) modeling. Methods: Using the geometry of the posterior eye from previous axisymmetric FE models (Sigal et al. 2004), we added an elongated optic nerve and optic nerve sheath, including the pia and dura. Tissues were modeled as linear elastic solids. Intraocular pressure and central retinal vessel pressures were set at 15 mmHg and 55 mmHg, respectively. ICP varied from 0 mmHg (suitable for standing on earth) to 30 mmHg (representing severe intracranial hypertension, thought to occur in space flight). We focused on strains and deformations in the LC and optic nerve (within 1 mm of the LC) since we hypothesize that they may contribute to vision loss in VIIP. Results: Elevating ICP from 0 to 30 mmHg significantly altered the strain distributions in both the LC and optic nerve (Figure), notably leading to more extreme strain values in both tension and compression. Specifically, the extreme (95th percentile) tensile strains in the LC and optic nerve increased by 2.7- and 3.8-fold, respectively. Similarly, elevation of ICP led to a 2.5- and 3.3-fold increase in extreme (5th percentile) compressive strains in the LC and optic nerve, respectively. Conclusions: The elevated ICP thought to occur during spaceflight leads to large acute changes in the biomechanical environment of the LC and optic nerve, and we hypothesize that such changes can activate mechanosensitive cells and invoke tissue remodeling. These simulations provide a foundation for more comprehensive studies of microgravity effects on human vision, e.g. to guide biological studies in which cells and tissues are mechanically loaded in a ranger elevant for microgravity conditions.
    Keywords: Aerospace Medicine
    Type: GRC-E-DAA-TN23060 , The Association for Research in Vision and Ophthalmology (ARVO) 2015 Annual Meeting; 3-7 May 2015; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: To investigate ophthalmic changes in spaceflight, we would like to predict the impact of blood dysregulation and elevated intracranial pressure (ICP) on Intraocular Pressure (IOP). Unlike other physiological systems, there are very few lumped parameter models of the eye. The eye model described here is novel in its inclusion of the human choroid and retrobulbar subarachnoid space (rSAS), which are key elements in investigating the impact of increased ICP and ocular blood volume. Some ingenuity was required in modeling the blood and rSAS compartments due to the lack of quantitative data on essential hydrodynamic quantities, such as net choroidal volume and blood flowrate, inlet and exit pressures, and material properties, such as compliances between compartments.
    Keywords: Aerospace Medicine; Systems Analysis and Operations Research
    Type: GRC-E-DAA-TN20061 , Human Research Program Investigators'' Workshop: Integrated Pathways to Mars; 13-15 Jan. 2015; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aerospace Medicine
    Type: E-663203 , Human Research Program Investigators Workshop; 13-16 Feb. 2012; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: This abstract describes development work performed on the NASA Digital Astronaut Project Muscle Model. Muscle atrophy is a known physiological response to exposure to a low gravity environment. The DAP muscle model computationally predicts the change in muscle structure and function vs. time in a reduced gravity environment. The spaceflight muscle model can then be used in biomechanical models of exercise countermeasures and spaceflight tasks to: 1) develop site specific bone loading input to the DAP bone adaptation model over the course of a mission; 2) predict astronaut performance of spaceflight tasks; 3) inform effectiveness of new exercise countermeasures concepts.
    Keywords: Aerospace Medicine
    Type: GRC-E-DAA-TN20325 , 2015 Human Research Program Investigators'' Workshop; 13-15 Jan. 2015; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The Advanced Resistive Exercise Device (ARED) is the resistive exercise device used by astronauts on the International Space Station (ISS) to mitigate bone loss and muscle atrophy due to extended exposure to microgravity (micro g). The Digital Astronaut Project (DAP) has developed a multi-body dynamics model of biomechanics models for use in spaceflight exercise physiology research and operations. In an effort to advance model maturity and credibility of the ARED model, the DAP performed verification, validation and credibility (VV and C) assessment of the analyses of the model in accordance to NASA-STD-7009 'Standards for Models and Simulations'.
    Keywords: Aerospace Medicine
    Type: JSC-CN-30026 , NASA Human Research Program Investigators'' Workshop; 12-14 Feb. 2014; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Long duration space travel to destinations such as Mars or an asteroid will expose astronauts to extended periods of reduced gravity. Astronauts will use an exercise regime for the duration of the space flight to minimize the loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Since the area available in the spacecraft for an exercise device is limited and gravity is not present to aid loading, compact resistance exercise device prototypes are being developed. Since it is difficult to rigorously test these proposed devices in space flight, computational modeling provides an estimation of the muscle forces, joint torques and joint loads during exercise to gain insight on the efficacy to protect the musculoskeletal health of astronauts.
    Keywords: Computer Programming and Software; Aerospace Medicine
    Type: GRC-E-DAA-TN19807 , Space Radiation Investigators'' Workshop and Behavioral Health and Performance Working Group; 12-15 Jan. 2015; Galveston, TX; United States|NASA Human Research Program Investigators'' Workshop: Integrated Pathways to Mars; 13-15 Jan. 2015; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-30586 , HRP Investigators'' Workshop; 12-13 Feb. 2014; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...