ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 60 (1989), S. 807-807 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 59 (1988), S. 1497-1499 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Resonant laser probing diagnostics are used to observe laser-produced barium plasmas (n≤1015 cm−3, T(approximately-equal-to)1 eV) streaming (v(approximately-equal-to)106 cm/s) across a strong transverse magnetic field (10 kG). The interaction of the plasma with the magnetic field produces structure in the plasma. The observation of this structure requires resonant diagnostics because of the very low plasma density in this experiment. A YAG-pumped dye laser is tuned near the Ba ii 4554-A(ring) transition for resonant absorption, shadowgraphy, and scattering measurements. Resonant absorption and shadowgraphy images reveal that the plasma expands across the field with virtually no inhibition from the field, while narrowing in the plane perpendicular to the field. In the plane of the magnetic field the expansion is highly structured, taking the form of very narrow jets aligned along the field lines. This structure appears to be a manifestation of a beam-plasma-type instability. For a comparison with theoretical predictions the plasma density and scale lengths are measured by resonant scattering.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 4 (1997), S. 1397-1401 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Thin plastic (CH) foils were irradiated by the Naval Research Laboratory Nike [Obenschain et al., Phys. Plasmas 3, 2098 (1996)] KrF laser and were imaged in the x-ray and extreme ultraviolet regions with two-dimensional spatial resolution in the 3–10 μm range. The CH foils were backlit by a silicon plasma. A spherically curved quartz crystal produced monochromatic images of the Si+12 resonance line radiation with energy 1865 eV that was transmitted by the CH foils. Instabilities that were seeded by linear ripple patterns on the irradiated sides of CH foils were observed. The ripple patterns had periods in the 31–125 μm range and amplitudes in the 0.25–5.0 μm range. The silicon backlighter emission was recorded by an x-ray spectrometer, and the 1865 eV resonance line emission was recorded by a fast x-ray diode. The multilayer mirror telescope recorded images of the C+3 1550 Å emission (energy 8.0 eV) from the backside of the CH foils. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Nike is a 56 beam Krypton Fluoride (KrF) laser system using Induced Spatial Incoherence (ISI) beam smoothing with a measured focal nonuniformity 〈ΔI/I〉 of 1% rms in a single beam [S. Obenschain et al., Phys. Plasmas 3, 1996 (2098)]. When 37 of these beams are overlapped on the target, we estimate that the beam nonuniformity is reduced by 37, to (ΔI/I)≅0.15% (excluding short-wavelength beam-to-beam interference). The extraordinary uniformity of the laser drive, along with a newly developed x-ray framing diagnostic, has provided a unique facility for the accurate measurements of Rayleigh–Taylor amplified laser-imprinted mass perturbations under conditions relevant to direct-drive laser fusion. Data from targets with smooth surfaces as well as those with impressed sine wave perturbations agree with our two-dimensional (2-D) radiation hydrodynamics code that includes the time-dependent ISI beam modulations. A 2-D simulation of a target with a 100 Å rms randomly rough surface finish driven by a completely uniform beam gives final perturbation amplitudes similar to the experimental data for the smoothest laser profile. These results are promising for direct-drive laser fusion.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Krypton-fluoride (KrF) lasers are of interest to laser fusion because they have both the large bandwidth capability ((approximately-greater-than)THz) desired for rapid beam smoothing and the short laser wavelength (1/4 μm) needed for good laser–target coupling. Nike is a recently completed 56-beam KrF laser and target facility at the Naval Research Laboratory. Because of its bandwidth of 1 THz FWHM (full width at half-maximum), Nike produces more uniform focal distributions than any other high-energy ultraviolet laser. Nike was designed to study the hydrodynamic instability of ablatively accelerated planar targets. First results show that Nike has spatially uniform ablation pressures (Δp/p〈2%). Targets have been accelerated for distances sufficient to study hydrodynamic instability while maintaining good planarity. In this review we present the performance of the Nike laser in producing uniform illumination, and its performance in correspondingly uniform acceleration of targets. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Laser-driven shock experiments are used to study the equation-of-state (EOS) properties of liquid deuterium. Reflected shocks are utilized to increase the shock pressure, to expand the area of EOS phase space probed by the experiment, and to enhance the sensitivity to differences in compressibility. The results of these experiments differ substantially from the predictions of the Sesame EOS. EOS models showing large dissociation effects and large compressibility (up to a factor of 2) agree with the data. By use of independent techniques, this experiment offers the first confirmation of an earlier observation of enhanced compressibility in liquid deuterium. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 3 (1991), S. 1496-1500 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The efficiency with which 1.05 μm laser light is converted into x rays with energy less than 1.5 keV in high Z materials (gold) is increased by approximately 20% with the use of spatially and temporally incoherent light when compared to a nominal, high-powered laser beam with an identical average irradiance of 1014 W/cm2. This effect is not a result of increased laser light absorption, laser bandwidth, nor reduced hot electron generation for the incoherent light, but is probably due to the change in the short scale length (∼100 μm) laser light intensity distribution in the target plane. The absolute levels of stimulated scattering and hot electron generation were small in all cases. Incoherent illumination reduced stimulated Brillouin scattering levels from 1.1% to 0.2% and, similarly, hot electron generation was decreased from 0.1% to 0.07%.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 61 (1990), S. 3596-3599 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: We describe an optical diagnostic setup which permits simultaneous spatially and temporally resolved measurements of temperature and density from cold, dense laser-produced plasmas. Such information is necessary to investigate the physics of strongly coupled plasmas. The plasma is created in a slab geometry such that the transverse slab dimension is approximately one optical depth of the probing radiation in thickness. To perform the measurements the 2nd harmonic (λ=0.527 μm) of a mode-locked Nd:glass laser (τpulse=300–500 ps) is split into two orthogonally polarized beams. One of the beams measures plasma electron density using polarization wave front interferometry. The other beam uses a set of fast (τ=350 ps) photodiodes to measure single-frequency optical absorption. Plasma electron temperature is determined from time-resolved absolute emission measurements combined with the optical absorption measurements via Kirchoff's law. This technique avoids the difficulties involved in spectroscopic temperature measurements, where the spectral intensities and line profiles are affected by the physics of the cold, dense plasma. A set of timing fiducials allows the entire set of diagnostics to be synchronized in time, while an accurate, self-referenced alignment system assures that all diagnostics sample the same region of plasma volume.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: We describe an optical diagnostic setup which permits simultaneous spatially and temporally resolved measurements of temperature and density from cold, dense laser-produced plasmas. Such information is necessary to investigate the physics of strongly coupled plasmas. The plasma is created in a slab geometry such that the transverse slab dimension is approximately one optical depth of the probing radiation in thickness. To perform the measurements the 2nd harmonic (λ=0.527 μm) of a mode-locked Nd:glass laser (τpulse=300–500 ps) is split into two orthogonally polarized beams. One of the beams measures plasma electron density using polarization wave front interferometry. The other beam uses a set of fast (τ=350 ps) photodiodes to measure single-frequency optical absorption. Plasma electron temperature is determined from time-resolved absolute emission measurements combined with the optical absorption measurements via Kirchoff's law. This technique avoids the difficulties involved in spectroscopic temperature measurements, where the spectral intensities and line profiles are affected by the physics of the cold, dense plasma. A set of timing fiducials allows the entire set of diagnostics to be synchronized in time, while an accurate, self-referenced alignment system assures that all diagnostics sample the same region of plasma volume.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Journal of fusion energy 10 (1991), S. 301-303 
    ISSN: 1572-9591
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract NIKE is a second generation high power KrF laser now under construction at the Naval Research Laboratory. The project is a collaborative effort between NRL and Los Alamos National Laboratory. NIKE is designed to deliver more than 2 kJ of energy to target in a 600-μm focal spot and a 4-ns pulse duration. Echelon free induced spatial incoherence (ISI) will be used to produce uniform target illumination. Flat targets will be ablatively accelerated to study both Rayleigh-Taylor and parametric instabilities. These results will have direct implications to direct-drive inertial confinement fusion for commercial energy applications. Reliable operation of a high power KrF laser is also an important goal of the NIKE laser, with the objective of 1000 target shots per year. This would be an important step in the development of the KrF laser as an ICF driver. NIKE is cheduled to begin target experiments in early 1994. If successful, these experiments will provide a technical basis to proceed with construction of an ignition facility.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...