ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2017-10-05
    Description: Understanding the rheological properties of clay suspensions is critical to assessing the behavior of sediment gravity flows such as debris flow or turbidity current. We conducted rheological measurements of composite smectite-quartz suspensions at a temperature of 7°C and a salt concentration of 0.6 M. This is representative of smectite-bearing sediments under conditions on the seafloor. The flow curves obtained were fitted by the Bingham fluid model, from which we determined the Bingham yield stress and dynamic viscosity of each suspension. At a constant smectite-quartz mixing ratio, the yield stress and the dynamic viscosity tend to increase as the solid/water ratio of the suspension is increased. In the case of a constant solid/water ratio, these values increase with increasing smectite content in the smectite-quartz mixture. Additional experiments exploring differing physicochemical conditions (pH 1.0–9.0; temperature 2–30°C; and electrolyte (NaCl) concentration 0.2–0.6 M) revealed that the influence of temperature is negligible, while pH moderately affects the rheology of the suspension. More significantly, the electrolyte concentration greatly affects the flow behavior. These variations can be explained by direct and/or indirect (double-layer) interactions between smectite-smectite particles as well as between smectite-quartz particles in the suspension. Although smectite is known as a frictionally weak material, our experimental results suggest that its occurrence can reduce the likelihood that slope failure initiates. Furthermore, smectite can effectively suppress the spreading distance once the slope has failed. ©2017. American Geophysical Union. All Rights Reserved.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-11
    Description: The 6.6 Mw Iburi–Tobu earthquake struck southern Hokkaido, Japan on 6 September 2018. The earthquake triggered widespread slope collapses in the hills near the epicenter, resulting in destructive landslides that killed 36 people. Volcanic deposits covering the region slid downhill in a flow-like manner suggestive of fluidized landslides. Here, we report a distinctive example of liquefaction in the field, which could be a prerequisite for the generation of fluidized landslides triggered by large earthquakes. In the scarp of a typical landslide, an altered halloysite-bearing volcanic layer is observed at a level almost coincident with the sliding surface. The layer is intensely undulating and can be divided into an upper clay-rich layer and a lower pumice-rich layer, suggesting that the altered layer had liquefied as a result of the strong coseismic ground motion. The layer had been soaked by heavy rainfall just one day before the earthquake and could have liquefied, producing a weak and slippery plane, resulting in the catastrophic landslides in this area.
    Electronic ISSN: 2045-2322
    Topics: Natural Sciences in General
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...