ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1662-8985
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Carbon monoxide (CO) is a significant air pollutant produced in incomplete oxidation ofcarbon in combustion. From the viewpoint of environmental protection, it is important that theconcentration of CO gas is lowered in air. Catalysis is proving to be an effective route for removingthis pollutant. Therefore, a design of nano-structured catalysts with high efficiency is required. In thepresent work, we focus on a development of nano-size CuOx-CeO2 catalysts for CO oxidationreaction. To prepare nano-structured Cu loaded CeO2 catalysts, a combined method of theconventional impregnation and ammonium carbonate co-precipitation was examined. Morphology,crystal phase and surface structure of prepared catalysts were characterized using High-ResolutionTransmission Electron Microscopy (HRTEM), Scanning Electron Microscopy (SEM) and PowderX-ray Diffraction (XRD). Catalytic properties of CuOx-CeO2 for CO oxidation were investigated ingas flow reactor system under atmospheric pressure and compared with copper oxide loaded zincoxide. We expected that nano-structured CuOx-CeO2 catalysts could be used for removing COproduced in a wet reforming reaction of fuel cell applications
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Solid state phenomena Vol. 119 (Jan. 2007), p. 291-294 
    ISSN: 1662-9779
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Physics
    Notes: Mesoporous carbon nitride materials have been synthesized using SBA-15 bypore filling technique whereas mesoporous boron nitride and boron carbon nitride havebeen prepared by elemental substitution technique using mesoporous carbon as template.The obtained materials have been unambiguously characterized by sophisticatedtechniques such as XRD, HRTEM, EELS, XPS, FT-IR and N2 adsorption. Thetextural parameters of the materials are quite higher as compared to the respectivenonporous nitrides. These materials could offer great potential for the applications, suchas catalytic supports, gas storage, biomolecule adsorption and drug delivery
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Materials science forum Vol. 539-543 (Mar. 2007), p. 1437-1442 
    ISSN: 1662-9752
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Rare earth doped ceria compounds are fluorite related oxides which show oxide ionicconductivity higher than yttria stabilized zirconia in oxidizing atmosphere. As a consequence of this,considerable interest has been shown in application of these materials for ‘low (below 500°C)’temperature operation of solid oxide fuel cells (SOFCs). In this study, the nano-sized powders ofDyxCe1-xO2-x/2 (x=0.15 and 0.2) were prepared using ammonium carbonate co-precipitation method.To design the nano-structure in aforementioned materials, the round shape particles were preparedin nano-scale. The combined process of Spark Plasma Sintering (SPS) and Conventional Sintering(CS) was examined for fabrication of nano-structured doped CeO2 solid electrolytes. Thenano-structural features in the (SPS+CS) specimen and CS specimen were observed usingtransmission electron microscopy (TEM). This micro-analysis suggested that the micro-domainwith distorted pyrochlore structure exists in the grain of these materials. The conducting propertiesin the specimens were strongly influenced by the micro-domain size. It is found that the presentcombined process minimized the micro-domain size and maximized the conductivity in thespecimens. Also nano-structured Dy doped CeO2 sintered bodies in the present study had wide ionicdomain and high transport number of oxygen. This suggests that fabricated sintered bodies aresuitable for the solid electrolyte in low temperature operated SOFCs. It is concluded that a controlof micro-domain size is a key for development of high quality doped CeO2 electrolytes for fuel cellapplication. It is expected that advanced solid electrolytes for clean energy production will beproduced by a design of nano-structure in rare earth doped CeO2 solid electrolyte
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Small, compact genomes of ultrasmall unicellular algae provide information on the basic and essential genes that support the lives of photosynthetic eukaryotes, including higher plants. Here we report the 16,520,305-base-pair sequence of the 20 chromosomes of the unicellular red alga ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 87 (2004), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Hydroxyl-type Sc2O3 precursors have been synthesized via precipitation at 80°C with hexamethylenetetramine as the precipitant. The effects of starting salts (scandium nitrate and sulfate) on powder properties are investigated. Characterizations of the powders are achieved by elemental analysis, X-ray diffractometry (XRD), differential thermal analysis/thermogravimetry (DTA/TG), high-resolution scanning electron microscopy (HRSEM), and Brunauer-Emmett-Teller (BET) analysis. Hard-aggregated precursors (γ-ScOOH·0.6H2O) are formed with scandium nitrate, which convert to Sc2O3 at temperatures ≥400°C, yielding nanocrystalline oxides of low surface area. The use of sulfate leads to a loosely agglomerated basic sulfate powder having an approximate composition of Sc(OH)2.6(SO4)0.2·H2O. The powder transforms to Sc2O3 via dehydroxylization and desulfurization at temperatures up to 1000°C. Well-dispersed Sc2O3 nanopowders (∼64.3 nm) of high purity have been obtained by calcining the basic sulfate at 1000°C for 4 h. The effects of SO42− on powder properties are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 86 (2003), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: 10mol% Gd2O3-doped CeO2 solid solutions (20GDC) have been synthesized via carbonate coprecipitation using ammonium bicarbonate (AHC) and urea as the precipitants. The precursors and the resultant oxide powders were characterized via chemical analysis, X-ray diffractometry (XRD), Brunauer–Emmett–Teller (BET) analysis, and high-resolution scanning electron microscopy (HRSEM). Sinterabilities of the 20GDC oxides in air were studied by constant-rate-of-heating (CRH) sintering and the conventional ramp-and-holding sintering methods. The precursor processed by both methods is hydroxyl carbonate but shows quite different particle morphologies in the two cases. Highly sinterable 20GDC oxides that can be densified to 〉99% of the theoretical at 1050°C within 4 h have been obtained via the AHC method.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 86 (2003), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Two wet-chemical routes have been used to synthesize Sc2O3 nanopowders from nitrate solutions employing ammonia water (AW) and ammonium hydrogen carbonate (AHC) as the precipitants. The precursors and the resultant oxides are characterized by elemental analysis, X-ray diffractometry, differential thermal analysis/thermogravimetry, high-resolution scanning electron microscopy, and Brunauer-Emmett-Teller analysis. Crystalline γ-ScOOH·nH2O (n≈ 0.5) is the only phase obtained by the AW method. This phase dehydrates to Sc2O3 at ∼400°C, yielding hard aggregated nanocrystalline Sc2O3 powders. Three types of precursors have been synthesized by the AHC method, depending on the AHC/Sc3+ molar ratio (R): amorphous basic carbonate [Sc(OH)CO3·H2O] at R≤ 3, crystalline double carbonate [(NH4)Sc(CO3)2·H2O] at R≥ 4, and a mixture of the two phases at 3 〈 R 〈 4. Among these precursors, only the basic carbonate shows spherical particle morphology, ultrafine particle size (∼50 nm), and weak agglomeration. Sc2O3 nanopowders (∼28 nm) with high surface area (∼49 m2/g) have been prepared by calcining the basic carbonate at 700°C for 2 h.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 85 (2002), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Nanocrystalline CeO2 powders have been successfully synthesized via a carbonate precipitation method, using ammonium carbonate (AC) as the precipitant and cerium nitrate hexahydrate as the cerium source. The AC/Ce3+ molar ratio (R) affects significantly precursor properties, and spherical nanoparticles can be produced only in a narrow range of 2 〈 R≤ 3. The precursor, having an approximate composition of Ce(OH)CO3·2.5H2O, decomposes to CeO2 at temperatures ≥300°C. The CeO2 powder calcined at 700°C exhibits high reactivity and can be densified to 〉99% of theoretical at 1000°C.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 85 (2002), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Praseodymium-doped ceria (CeO2) nanopowders have been synthesized via a simple but effective carbonate-coprecipitation method, using nitrates as the starting salts and ammonium carbonate as the precipitant. The precursors produced in this work are ammonium rare-earth double carbonates, with a general formula of (NH4)0.16Ce1−xPrx(CO3)1.58·H2O (0 〈 x≤ 0.20), which directly yield oxide solid solutions on thermal decomposition at a very low temperature of ∼400°C. Praseodymium doping causes a gradual contraction of the CeO2 lattice, because of the oxidation of Pr3+ to smaller Pr4+, and suppresses crystallite coarsening of the oxides during calcination. Dense ceramics have been fabricated from the thus-prepared nanopowders via pressureless sintering for 4 h at a low temperature of 1200°C.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The scavenging of a resistive siliceous phase via the addition of Al2O3 was studied, using imaging secondary-ion mass spectroscopy (SIMS), given the improved grain-boundary conductivity in 8-mol%-yttria-stabilized zirconia (8YSZ). The grain-boundary resistivity in 8YSZ decreased noticeably with the addition of 1 mol% of Al2O3. Strong SiO2 segregation at the grain boundaries was observed in a SIMS map of pure 8YSZ that contained 120 ppm of SiO2 (by weight). The addition of 1 mol% of Al2O3 caused the SiO2 to gather around the Al2O3 particles. The present observations provided direct and visual evidence of SiO2 segregation at the grain boundaries (which had a deleterious effect on grain-boundary conductivity) and the scavenging of SiO2 via Al2O3 addition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...