ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-07-28
    Description: During the period 2018–2020, Europe experienced a series of hot and dry weather conditions with significant socioeconomic and environmental consequences. Yet, the extremity of these multi‐year dry conditions is not recognized. Here, we provide a comprehensive spatio‐temporal assessment of the drought hazard over Europe by benchmarking past exceptional events during the period from 1766 to 2020. We identified the 2018–2020 drought event as a new benchmark having an unprecedented intensity that persisted for more than 2 years, exhibiting a mean areal coverage of 35.6% and an average duration of 12.2 months. What makes this event truly exceptional compared with past events is its near‐surface air temperature anomaly reaching +2.8 K, which constitutes a further evidence that the ongoing global warming is exacerbating present drought events. Furthermore, future events based on climate model simulations Coupled Model Intercomparison Project v5 suggest that Europe should be prepared for events of comparable intensity as the 2018–2020 event but with durations longer than any of those experienced in the last 250 years. Our study thus emphasizes the urgent need for adaption and mitigation strategies to cope with such multi‐year drought events across Europe.
    Description: Plain Language Summary: This manuscript demonstrates that the 2018–2020 multi‐year drought event constitutes a new benchmark in Europe, with an unprecedented level of intensity over the past 250 years. What makes this event truly exceptional compared with past events is its temperature anomaly reaching +2.8 K. This finding provides new evidence that the ongoing global warming exacerbates current drought events. The key message of this study is that the projected future events across the European continent will have a comparable intensity as the 2018–2020 drought but exhibit considerably longer durations than any of those observed during the last 250 years. Our analysis also shows that these exceptional temperature‐enhanced droughts significantly negatively impact commodity crops across Europe.
    Description: Key Points: The 2018–2020 multi‐year drought shows unprecedented level of intensity during the past 250 years. The 2018–2020 event reached record‐breaking +2.8 K temperature anomaly and negatively impacted major crops. Future drought events reach comparable intensity of 2018–2020 but with considerably longer durations.
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Description: Grantová Agentura České Republiky (GAČR) http://dx.doi.org/10.13039/501100001824
    Description: Helmholtz‐Fonds (Helmholtz‐Fonds e.V.) http://dx.doi.org/10.13039/501100013655
    Keywords: ddc:551.6
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-04-24
    Description: Modelling of hydrological extremes and drought modelling in particular has received much attention over recent decades. The main aim of this study is to apply a statistical model for drought estimation (in this case deficit volume) using extreme value theory and the index-flood method and to reduce the uncertainties in estimation of drought event return levels. Deficit volumes for 133 catchments in the Czech Republic (1901–2015) were simulated by hydrological model BILAN. The validation of severity, intensity and length of simulated drought events revealed good match with the available observed data. To estimate return levels of the deficit volumes, it is assumed (in accord with the index-flood method), that the deficit volumes within a homogeneous region are identically distributed after scaling with a site-specific factor. The parameters of the scaled regional distribution are estimated using L-moments. The goodness-of-fit of the statistical model is assessed by Anderson–Darling test. For the estimation of critical values, sampling methods allowing for handling of years without drought were used. It is shown, that the index-flood model with a Generalized Pareto distribution performs well and substantially reduces the uncertainty related to the estimation of the shape parameter and of the large deficit volume quantiles.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-14
    Description: We present a 250-year (1766–2015) inventory of European meteorological, hydrological, and agricultural droughts derived from ensemble simulations of the mesoscale Hydrological Model (mHM). The inventory of droughts takes into account an ensemble of 100 simulations from the hydrological model, allowing for assessment of how different meteorological forcing and model parameterizations affect a drought ranking. For the most extreme droughts, the variability in the ranking of drought events is low, while for the years with moderate precipitation deficits, the variability increases. Despite the underlying uncertainties, our drought inventory shows increased recurrence of soil moisture droughts in the Mediterranean and declining spatial extent of hydrological drought in Central Europe over the last three decades. ©2019. American Geophysical Union. All Rights Reserved.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-02-19
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-03-03
    Description: The determination of minimum residual flow (MRF) follows diverse methodology in Europe due to differing hydrological conditions, ecosystem requirements, water abstraction requirements, and legislation. Methodologies in individual countries are difficult to compare qualitatively. However, individual approaches can serve as examples for countries undergoing the process of developing new methodologies, either for legislative purposes or to improve environmental standards on watercourses. This is exactly the situation in the Czech Republic which, has been working on the Regulation of the Government of the Czech Republic for ten years, since the amendment to the Water Act in 2010, defines the methods and criteria for determining the MRF on watercourses. T.G. Masaryk Water Research Institute, p.r.i., was commissioned to develop a new methodology to serve as the basis for the wording of aforementioned regulation. The new methodological approach took into account modern trends concerning the preservation of ecological standards, and used standard hydrological characteristics for its calculations. The newly proposed approach is undergoing a complicated approval process as the authors seek to increase the MRF compared to the current approach. The new approach assumes an MRF setting between Q97 and Q90. It defines four areas within the Czech Republic, by their hydrological and hydrogeological conditions, where the MRF is determined in different ways. This article describes the development of a new methodological approach, including the use the available Czech Hydrometeorological Institute data sets, the proposed regional division for MRF calculations, the determination the MRF below reservoirs, and the current state of the issue.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...