ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Chemical Engineering & Technology - CET 17 (1994), S. 422-429 
    ISSN: 0930-7516
    Keywords: Chemistry ; Industrial Chemistry and Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Affinity chromatography (biospecific adsorption) relies on specific interactions of biological molecules such as enzymes, antigens, antibodies, and proteins. The process consists of three steps: adsorption, washing, and elution. A mathematical model including convection, diffusion, and reversible reaction is formulated to analyse the breakthrough behaviour of the solute. A moving finite element orthogonal collocation method is applied with respect to the space variables of the governing partial differential equations of the model to evaluate the breakthrough of the solute. Danckwerts' boundary conditions are considered for the column. The validity of the numerical scheme is checked by comparison with an analytical solution for a simplified model. The results obtained from model simulation show that the breakthrough time of the solute is significantly influenced by the axial dispersion coefficient, solute concentration, ligand content, reaction kinetics, particle porosity, particle size, and flow rate. Solute recovery and bed utilisation efficiencies are evaluated for different values of the above parameters.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 28 (1986), S. 1408-1420 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Based upon the general characteristics of the optimal feed rate profiles presented in an earlier article, efficient computational algorithms have been developed for fed-batch fermentation processes described by four or less mass balance equations. These algorithms make computations of optimal substrate feed rate profiles straight forward and simple for various fed-batch cultures for such products as antibiotics, amino acids, enzymes, alcohols, and cell mass. Numerical examples of penicillin fermentation and bacterial cell mass production are given in detail, illustrating the use of these algorithms.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 28 (1986), S. 1396-1407 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: General Characteristics of the optimal feed rate profiles have been deduced for various fed-batch fermentation processes by analyzing singular controls and singular arcs. The optimal control sequences depend on the shapes of the specific growth and product formation rates, μ andπ, and the initial conditions. For fed-batch processes described by four mass balance equations, the most general optimal control sequence consists of a period of maximum feed rate, a period of minimum feed rate (a batch period), a period of singular feed rate (variable and intermediate), and a batch period. Degenerate sequences in which one or more periods are missing can result with a particular set of initial conditions. If the fermentation time is not critical, the singular control maximizes the net yield of product and only when the time is also important, it balances a trade off between the yield of product and the specific growth rate which dictates the fermentation time. With the sequence of optimal control known, the optimal feed rate profile determination is reduced to a problem of determining switching times.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 30 (1987), S. 528-540 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The problem of feedback optimization of the feed rate for fed-batch fermentation processes is formulated in the framework of singular control theory and switching hypersurfaces. Using four differential balance equations that describe a general class of fedbatch processes and a general objective function to be minimized, it is shown that under certain restrictions the feedback optimization of the feed rate can be realized as a nonlinear function of the state variables, such as the concentrations of cell mass, substrate and product, and the fermentor volume. The restrictions on the initial conditions, the fermentation kinetics and the objective function, that are needed for realization of the feedback optimization, are provided. Fed-batch fermentation models of lysine and alcohol are used to construct switching curves and to illustrate the feedback optimization of the feed flow rates.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 33 (1989), S. 11-15 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Determination of the optimal feed rate for fed-batch fermentation is normally a problem in singular control with a state inequality constraint and as such is, in general, difficult to solve, especially for those described by a large number of dynamic mass balance equations. In this article we use a new set of state variables and the culture volume as the control variable. In this way the problem is converted to one of nonsingular control with the magnitude and rate constraints on the manipulated variable and can be numerically solved by a gradient-based technique, thus avoiding the difficulty associated with singular control problems. Examples are given to illustrate the method.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1994-12-01
    Print ISSN: 0930-7516
    Electronic ISSN: 1521-4125
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...