ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Key engineering materials Vol. 400-402 (Oct. 2008), p. 169-174 
    ISSN: 1013-9826
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Shrinkage compensating by the expansion generated by the hydration of expansive additive is one of the important measures to improve the dimensional stability of cement-based materials. Due to the slow hydration of MgO, it may cause delayed expansion in cement and thus has been used as an expansive additive to compensate thermal shrinkage at late age in mass concrete. The relationship among the microstructure, activity and expansion properties of MgO-type expansive additive (MEA) has not been clearly demonstrated, though many researches have been focused on its expansion mechanism and expansion properties. So the industrial production and application of MEA depend much on empirical methods. Three different types of MEA are produced by calcining magnesite at 900°C, 1100°C, and 1300 °Cfor 1h in an electrical furnace. The specific surface area, activity, inner pore structure, microtopography and expansion properties of the MEA have been investigated. Results show the effect of calcination temperatures on the expansion properties of MEA results from the changes in its microstructure, specific area, and thus the activity. High calcination temperature causes growth in MgO grain, decrease in specific area and surface defects of MgO, and hence the reduction of the activity value, inducing slow hydration rate and thus delayed expansion. This study will provide a platform for well understanding various activity and expansion properties of MEA produced under different temperatures
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...