ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Solid state phenomena Vol. 23-24 (Jan. 1992), p. 29-47 
    ISSN: 1662-9779
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    The European physical journal 3 (2000), S. 71-86 
    ISSN: 1292-895X
    Keywords: PACS. 83.70.Fn Granular solids - 81.05.Rm Porous materials; granular materials - 47.20.-k Hydrodynamic stability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract: We analyze theoretically the dynamics of aeolian sand ripples. In order to put the study in the context, we first review existing models. This paper is a continuation of two previous papers (Z. Csahók et al., Physica D 128, 87 (1999); A. Valance et al., Eur. Phys. J. B 10, 543 (1999)), the first one is based on symmetries and the second on a hydrodynamical model. We show how the hydrodynamical model may be modified to recover the missing terms that are dictated by symmetries. The symmetry and conservation arguments are powerful in that the form of the equation is model-independent. We then present an extensive numerical and analytical analysis of the generic sand ripple equation. We find that at the initial stage the wavelength of the ripple is that corresponding to the linearly most dangerous mode. At later stages the profile undergoes a coarsening process leading to a significant increase of the wavelength. We find that including the next higher-order nonlinear term in the equation leads naturally to a saturation of the local slope. We analyze both analytically and numerically the coarsening stage, in terms of a dynamical exponent for the mean wavelength increase. We discuss some future lines of investigations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    The European physical journal 3 (2000), S. 403-412 
    ISSN: 1292-895X
    Keywords: PACS. 87.16.-b Subcellular structure and processes [:AND:] 87.19.-j Properties of higher organisms - 47.55.Dz Drops and bubbles
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract: We study theoretically vesicle locomotion due to haptotaxis. Haptotaxis is referred to motion induced by an adhesion gradient on a substrate. The problem is solved within a local approximation where a Rayleigh-type dissipation is adopted. The dynamical model is akin to the Rousse model for polymers. An invariant formulation is used to solve a dynamical model which includes a kind of dissipation due to bond breaking/restoring with the substrate. For a stationary situation where the vesicle acquires a constant drift velocity, we formulate the propulsion problem in terms of a nonlinear eigenvalue (the a priori unknown drift velocity) one of Barenblat-Zeldovitch type. A counting argument shows that the velocity belongs to a discrete set. For a relatively tense vesicle, we provide an analytical expression for the drift velocity as a function of relevant parameters. We find good agreement with the full numerical solution. Despite the oversimplification of the model it allows the identification of a relevant quantity, namely the adhesion length, which turns out to be crucial also in the nonlocal model in the presence of hydrodynamics, a situation on which we have recently reported (I. Cantat and C. Misbah, Phys. Rev. Lett. 83, 235 (1999)) and which constitutes the subject of a forthcoming extensive study.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Solid state phenomena Vol. 3-4 (Jan. 1991), p. 29-56 
    ISSN: 1662-9779
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Nuclear Physics B (Proceedings Supplements) 5 (1988), S. 225-228 
    ISSN: 0920-5632
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Journal of Crystal Growth 99 (1990), S. 156-160 
    ISSN: 0022-0248
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    The European physical journal 18 (2000), S. 519-534 
    ISSN: 1434-6036
    Keywords: PACS. 05.70.Ln Nonequilibrium and irreversible thermodynamics - 68.35.Fx Diffusion; interface formation - 81.15.Aa Theory and models of film growth
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract: Step meandering due to a deterministic morphological instability on vicinal surfaces during growth is studied. We investigate nonlinear dynamics of a step model with asymmetric step kinetics, terrace and line diffusion, by means of a multiscale analysis. We give the detailed derivation of the highly nonlinear evolution equation on which a brief account has been given [6]. Decomposing the model into driving and relaxational contributions, we give a profound explanation to the origin of the unusual divergent scaling of step meander (where F is the incoming atom flux). A careful numerical analysis indicates that a cellular structure arises where plateaus form, as opposed to spike-like structures reported erroneously in reference [6]. As a robust feature, the amplitude of these cells scales as t 1/2, regardless of the strength of the Ehrlich-Schwoebel effect, or the presence of line diffusion. A simple ansatz allows to describe analytically the asymptotic regime quantitatively. We show also how sub-dominant terms from multiscale analysis account for the loss of up-down symmetry of the cellular structure.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    The European physical journal 29 (2002), S. 311-316 
    ISSN: 1434-6036
    Keywords: PACS. 87.16.Dg Membranes, bilayers, and vesicles – 47.55.Dz Drops and bubbles – 87.17.Jj Cell locomotion; chemotaxis and related directed motion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract: We study dynamics of a deformable entity (such as a vesicles under hydrodynamical constraints). We show how the problem can be solved by means of Green's functions associated with the Stokes equations. A gauge-field invariant formulation makes the study of dynamics efficient. However, this procedure has its short-coming. For example, if the fluids are not Newtonian, then no Green's function is available in general. We introduce a new approach, the advected field one, which opens a new avenue of applications. For example, non-Newtonian entities can be handled without additional deal. In addition problems like budding, droplet break-up in suspensions, can naturally be treated without additional complication. We exemplify the method on vesicles filled by a fluid having a viscosity contrast with the external fluid, and submitted to a shear flow. We show that beyond a viscosity contrast (the internal fluid being more viscous), the vesicle undergoes a tumbling bifurcation, which has a saddle-node nature. This bifurcation is known for blood cells. Indeed red cells either align in a shear flow or tumble according to whether haematocrit concentration is high or low.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    The European physical journal 33 (2003), S. 233-247 
    ISSN: 1434-6036
    Keywords: PACS. 68.35.Gy Mechanical properties; surface strains – 68.55.-a Thin film structure and morphology
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract: Elastic interactions between defects is investigated at the surface of thin layers, a question on which we have given a brief account [P. Peyla et al. Phys. Rev. Lett. 82, 787 (1999)]. Two isotropic defects do not interact in an unlimited medium, regardless of the spatial dimension, a result which can be shown on the basis of the Gauss theorem in electrostatics. Within isotropic elasticity theory, defects interact only (i) if they are, for example, at a surface (or at least if they feel a boundary), or if their action on the material is anisotropic (e.g. they create a non central force distribution, though the material elasticity is isotropic). It is known that two identical isotropic defects on the surface of a semi-infinite material repel each other. The repulsion law behaves as 1/r 3(r = defects separation). We first revisit the Lau-Kohn theory and extend it to anisotropic defects. Anisotropy is found to lead to attraction. We show that in thin films defects may either attract or repel each other depending on the local geometric force distribution caused by the defect. It is shown that the force distribution (or more precisely the forces configuration symmetry) fixes the exponent in the power law 1/r n (e.g. for a four-fold symmetry n = 4). We discuss the implication of this behaviour in various situations. We treat the interactions in terms of the symmetries associated with the defect. We argue that if the defects are isotropic, then their effective interaction in an unlimited 2D (or a thin film) medium arises from the induced interaction, which behaves as 1/r 4 for any defect symmetry. We shall also comment on the contribution to the interaction which arises from flexion of thin films.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    The European physical journal 11 (1999), S. 497-504 
    ISSN: 1434-6036
    Keywords: PACS. 05.70.Ln Nonequilibrium and irreversible thermodynamics - 82.65.Dp Thermodynamics of surfaces and interfaces - 68.55.-a Thin film structure and morphology
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract: We study the relaxation to equilibrium of two dimensional islands containing up to 20 000 atoms by Kinetic Monte Carlo simulations. We find that the commonly assumed relaxation mechanism - curvature-driven relaxation via atom diffusion - cannot explain the results obtained at low temperatures, where the island edges consist in large facets. Specifically, our simulations show that the exponent characterizing the dependence of the equilibration time on the island size is different at high and low temperatures, in contradiction with the above cited assumptions. Instead, we propose that - at low temperatures - the relaxation is limited by the nucleation of new atomic rows on the large facets: this allows us to explain both the activation energy and the island size dependence of the equilibration time.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...