ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 94 (1990), S. 456-459 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of the American Water Resources Association 37 (2001), S. 0 
    ISSN: 1752-1688
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Notes: : Demand side management is being used increasingly by Ontario municipalities as a way to improve the efficiency of water use, defer the costs associated with constructing new water treatment works, and minimize the environmental impacts associated with supplying water. A comprehensive survey of 153 Ontario municipalities was completed in mid-1998. These ranged in size from small rural townships (with populations as low as 500 people) to the province's largest urban center, Metropolitan Toronto, with a population of approximately 2.5 million people. The questionnaire measured the use of six broad types of demand side measures, including water pricing and metering; municipal by-laws (ordinances) that promote water conservation; operational and maintenance measures to reduce water losses and consumption; water-saving plumbing fixtures and devices; public participation programs that encourage water conservation; and other measures, such as water audits. Additionally, the survey collected data on implementation barriers and opportunities. Since the last comprehensive Ontario survey, conducted in 1987 by Kreutzwiser and Fea-gan (1989), there has been an increase in the use of basic tools such as metering and pricing, plumbing fixtures, and public participation programs. Additionally, new initiatives, such as water audits and computerized monitoring equipment, are being used. However, in many areas opportunities exist to make better use of demand side measures. Unfortunately, municipal capacity to do so often is constrained by (among other factors) limited finances, lack of political will, and public resistance. Demonstration of real cost savings to consumers, and the development of specific goals and objectives for demand side management programs, are two important steps needed to overcome these challenges.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    World Meteorological Organization
    In:  EPIC3WMO WWRP/PPP Publications Series, World Meteorological Organization, (WWRP/P), 84 p.
    Publication Date: 2018-01-17
    Description: EXECUTIVE SUMMARY The Polar Prediction Project (PPP) was conceived and initiated in 2012 by the World Meteorological Organization (WMO), through its World Weather Research Programme (WWRP), in response to rapid environmental change in the Polar Regions. The primary goal of the PPP is to advance scientific knowledge such that society, both within and outside of the Arctic and Antarctic, may benefit through applications of improved weather and climate services. This includes improved understanding and prediction of physical parameters and the ways people use the available information. To this end, the Polar Prediction Project Societal and Economic Research and Applications (PPP-SERA) working group was established in 2015. This report represents the foundational work of PPP-SERA and aims to explore how weather, water, ice and climate (WWIC) information is currently being used and produced in the Polar Regions, by whom, and for what reasons. The report also identifies, frames and articulates important areas of research related to the use and provision of environmental prediction services that should be prioritized and further developed during, and beyond, the Year of Polar Prediction (YOPP, 2017-19). The concepts of information value chains and human mobilities are used in this document to conceptualize the complex interaction between the production and use of environmental prediction information. This approach facilitates: (a) the exploration of WWIC-related risks that affect physical movement of people, goods and services between places (i.e. mobilities); (b) an examination of the demand for, and production and mobilization of, WWIC knowledge and information that can inform user decisions (i.e. value chain). We identify that WWIC information provision occurs through a variety of actors, from formal state institutions, to private and community-based organizations, to Indigenous and local knowledge obtained by a range of individual actors or groups, positioned in an increasingly complex value chain of information provision and use. The constitution, functioning and implications of these increasingly complex WWIC information value chains are currently not fully understood. Value chains used to describe linear processes whereby WWIC information was transferred directly from providers to users. Today, users not only consume WWIC information but they also co-produce data, information, and decisionmaking products. This has largely been facilitated by technological advancement and improved communications via the Internet, which promotes a decentralization of WWIC information services. Consequently, it is difficult to discern whether or not user needs are being adequately identified and addressed by providers and whether WWIC services are adding value to users. Our analysis indicates that human activities and mobility sectors operating in the Polar Regions vary widely in size and scope, and are diverse in terms of operational contexts and practices. Despite the challenge of mapping the temporal and spatial dimensions of human activities in the Polar Regions, due to a paucity of consistent information, we discuss relevant characteristics and future prospects of a range of distinct mobility sectors including: (a) commercial transportation (shipping and aviation); (b) tourism: (c) fishing; (d) resource extraction and development; (e) community activities; (f) government activities and scientific research. Most activities are on the rise and human activities in the Polar Regions are becoming increasingly diversified. Users appear to be increasingly dependent on specialised WWIC information services and technology needed to access these. More detailed, specialized and near-real-time weather and climate services are required to provide relevant information for a diversity of contexts and practices. While higher-quality WWIC information and greater resolution of data is necessary for some, it is insufficient for all. There is no ‘one-size-fits-all’ data product needed to assist the variety of users. Furthermore, the existence of more and improved WWIC information does not necessarily mean that it will be used. For WWIC data to be valuable and used, they must be trusted, easily understood, accessible, and packaged for easy transmission to remote areas with limited Internet bandwidth. There is also a need for systematic documentation regarding particular uses of existing WWIC information services, and thus more work is needed to collect data necessary to situate human activities and their mobilities within their spatial-temporal contexts and decisionmaking practices. To respond to these knowledge gaps, we identify that in-depth qualitative and quantitative research is needed which explores: (a) user information needs, behaviours and preferences; (b) the relationship between users and providers of WWIC information, including the co-production of services; (c) factors that enable or constrain access to, or provision of, WWIC information services; (d) infrastructure and communication needs. PPP-SERA, and social scientists involved in research that focuses on the Polar Regions more broadly, can contribute to addressing some of the knowledge gaps outlined in this document. We have compiled an initial database of sources for WWIC information that is of relevance for different user sectors and across different regions, and we envision broader and ongoing contributions to this effort. We also identify a need for categorization of users, decision factors, services sought and providers tailoring products for specific mobilities. This will highlight the complexity and interconnections between users, providers and decisionmaking contexts across the Polar Regions. The Polar Regions are undergoing dramatic environmental changes while seeing a general growth and diversification of human activity. These changes imply that WWIC services not only need to respond to rapidly transforming environmental parameters, but ought to be salient in the diverse contexts in which users engage with them. While it is still largely unknown how WWIC information services are currently being used, and to what extent they influence decisionmaking and planning, improved access to, and quality of, WWIC information is considered as significant for reducing the risks related to human activities in dynamic polar environments.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Miscellaneous , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-10-04
    Description: The Year of Polar Prediction (YOPP) is planned for mid-2017 to mid-2019, centred on 2018. Its goal is to enable a significant improvement in environmental prediction capabilities for the polar regions and beyond, by coordinating a period of intensive observing, modelling, prediction, verification, user-engagement and education activities. With a focus on time scales from hours to a season, YOPP is a major initiative of the World Meteorological Organization’s World Weather Research Programme (WWRP) and a key component of the Polar Prediction Project (PPP). YOPP is being planned and coordinated by the PPP Steering Group together with representatives from partners and other initiatives, including the World Climate Research Programme’s Polar Climate Predictability Initiative (PCPI). The objectives of YOPP are to: 1. Improve the existing polar observing system (enhanced coverage, higher-quality observations). 2. Gather additional observations through field programmes aimed at improving understanding of key polar processes. 3. Develop improved representation of key polar processes in (un)coupled models used for prediction. 4. Develop improved (coupled) data assimilation systems accounting for challenges in the polar regions such as sparseness of observational data. 5. Explore the predictability of the atmosphere-cryosphere-ocean system, with a focus on sea ice, on time scales from hours to a season. 6. Improve understanding of linkages between polar regions and lower latitudes, assess skill of models representing these linkages, and determine the impact of improved polar prediction on forecast skill in lower latitudes. 7. Improve verification of polar weather and environmental predictions to obtain better quantitative knowledge on model performance, and on the skill, especially for user- relevant parameters. 8. Identify various stakeholders and establish their decisionmaking needs with respect to weather, climate, ice, and related environmental services. 9. Assess the costs and benefits of using predictive information for a spectrum of users and services. 10. Provide training opportunities to generate a sound knowledge base (and its transfer across generations) on polar prediction related issues. YOPP is implemented in three distinct phases. During the YOPP Preparation Phase (2013 through to mid-2017) this Implementation Plan was developed, which includes key outcomes of consultations with partners at the YOPP Summit in July 2015. Plans will be further developed and refined through focused international workshops. There will be engagement with stakeholders and arrangement of funding, coordination of observations and modelling activities, and preparatory research. During the YOPP Core Phase (mid-2017 to mid-2019), four elements will be staged: intensive observing periods for both hemispheres, a complementary intensive modelling and prediction period, a period of enhanced monitoring of forecast use in decisionmaking including verification, and a special educational effort. Finally, during the YOPP Consolidation Phase (mid-2019 to 2022) the legacy of data, science and publications will be organized. The WWRP-PPP Steering Group provides endorsement throughout the YOPP phases for projects that contribute to YOPP. This process facilitates coordination and enhances visibility, communication, and networking.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Miscellaneous , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-01-27
    Description: The Year of Polar Prediction (YOPP) has the mission to enable a significant improvement in environmental prediction capabilities for the polar regions and beyond, by coordinating a period of intensive observing, modelling, prediction, verification, user- engagement and education activities. The YOPP Core Phase will be from mid-2017 to mid-2019, flanked by a Preparation Phase and a Consolidation Phase. YOPP is a key component of the World Meteorological Organization – World Weather Research Programme (WMO-WWRP) Polar Prediction Project (PPP). The objectives of YOPP are to: 1. Improve the existing polar observing system (better coverage, higher-quality observations); 2. Gather additional observations through field programmes aimed at improving understanding of key polar processes; 3. Develop improved representation of key polar processes in coupled (and uncoupled) models used for prediction; 4. Develop improved (coupled) data assimilation systems accounting for challenges in the polar regions such as sparseness of observational data; 5. Explore the predictability of the atmosphere-cryosphere-ocean system, with a focus on sea ice, on time scales from days to seasons; 6. Improve understanding of linkages between polar regions and lower latitudes and assess skill of models representing these linkages; 7. Improve verification of polar weather and environmental predictions to obtain better quantitative knowledge on model performance, and on the skill, especially for user-relevant parameters; 8. Demonstrate the benefits of using predictive information for a spectrum of user types and services; 9. Provide training opportunities to generate a sound knowledge base (and its transfer across generations) on polar prediction related issues. The PPP Steering Group provides endorsement for projects that contribute to YOPP to enhance coordination, visibility, communication, and networking. This White Paper is based largely on the much more comprehensive YOPP Implementation Plan (WWRP/PPP No. 3 – 2014), but has an emphasis on Arctic observations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-02-02
    Description: The polar regions have been attracting more and more attention in recent years, fuelled by the perceptible impacts of anthropogenic climate change. Polar climate change provides new opportunities, such as shorter shipping routes between Europe and East Asia, but also new risks such as the potential for industrial accidents or emergencies in ice-covered seas. Here, it is argued that environmental prediction systems for the polar regions are less developed than elsewhere. There are many reasons for this situation, including the polar regions being (historically) lower priority, with less in situ observations, and with numerous local physical processes that are less well-represented by models. By contrasting the relative importance of different physical processes in polar and lower latitudes, the need for a dedicated polar prediction effort is illustrated. Research priorities are identified that will help to advance environmental polar prediction capabilities. Examples include an improvement of the polar observing system; the use of coupled atmosphere-sea ice-ocean models, even for short-term prediction; and insight into polar-lower latitude linkages and their role for forecasting. Given the enormity of some of the challenges ahead, in a harsh and remote environment such as the polar regions, it is argued that rapid progress will only be possible with a coordinated international effort. More specifically, it is proposed to hold a Year of Polar Prediction (YOPP) from mid-2017 to mid-2019 in which the international research and operational forecasting community will work together with stakeholders in a period of intensive observing, modelling, prediction, verification, user-engagement and educational activities.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-17
    Description: What: 120 scientists, stakeholders, and representatives from operational forecasting centers, international bodies, and funding agencies assembled to make significant advances in the planning of the Year of Polar Prediction; When: 13-15 July 2015; Where: WMO Headquarters, Geneva, Switzerland
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    WMO
    In:  EPIC3SEAMLESS PREDICTION OF THE EARTH SYSTEM: FROM MINUTES TO MONTHS, WMO-No. 1156, Geneva, WMO, 471 p., pp. 371-384, ISBN: 978-92-63-11156-2
    Publication Date: 2015-07-01
    Description: Mission statement: “Promote cooperative international research enabling development of improved weather and environmental prediction services for the polar regions, on time scales from hours to seasonal”. Increased economic, transportation and research activities in polar regions are leading to more demands for sustained and improved availability of predictive weather and climate information to support decision-making. However, partly as a result of a strong emphasis of previous international efforts on lower and middle latitudes, many gaps in weather, sub-seasonal and seasonal forecasting in polar regions hamper reliable decision making in the Arctic, Antarctic and possibly the middle latitudes as well. In order to advance polar prediction capabilities, the WWRP Polar Prediction Project (PPP) has been established as one of three THORPEX (THe Observing System Research and Predictability EXperiment) legacy activities. The aim of PPP, a ten year endeavour (2013-2022), is to promote cooperative international research enabling development of improved weather and environmental prediction services for the polar regions, on hourly to seasonal time scales. In order to achieve its goals, PPP will enhance international and interdisciplinary collaboration through the development of strong linkages with related initiatives; strengthen linkages between academia, research institutions and operational forecasting centres; promote interactions and communication between research and stakeholders; and foster education and outreach. Flagship research activities of PPP include sea ice prediction, polar-lower latitude linkages and the Year of Polar Prediction (YOPP) - an intensive observational, coupled modelling, service-oriented research and educational effort in the period mid-2017 to mid-2019.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-04-28
    Description: In response to a growing interest in the Arctic in recent years, the number of real-time short-medium range sea ice prediction systems has been increasing, and now includes several systems covering the full Arctic Ocean, for example: the Arctic Cap Nowcast/Forecast System (ACNFS; Posey et al., 2010), Towards an Operational Prediction system for the North Atlantic European coastal Zones (TOPAZ; Bertino and Lisæter, 2008), and the Canadian Centre for Marine and Environmental Prediction’s Global Ice Ocean Prediction System (GIOPS; Smith et al., 2015) and Regional Ice Prediction System (RIPS; Lemieux et al., 2015; Buehner et al., 2013). In addition, numerous ice-ocean hindcasts1 and reanalyses have been made and intercompared through the Arctic Ocean Model Intercomparison Project (AOMIP; Johnson et al., 2007) and the CLIVAR Global Synthesis and Observations Panel (GSOP) Ocean Reanalysis Intercomparison Project (ORA-IP; Balmaseda et al., 2015). Despite this significant effort, it is difficult to ascertain the true skill of these prediction systems and their primary sources of error, as reliable observations are limited and verification techniques tend to vary from one group to another. As a result, the potential benefits of sea ice prediction for various user groups (e.g. national ice services, marine transportation and resource exploitation, coupling with numerical weather prediction) have been hindered by uncertainty regarding the skillfulness of predictions and how best to use them. An intercomparison of sea ice fields from existing systems by the GODAE Oceanview Intercomparison and Validation Task Team (www.godae.org) has been initiated, although a larger coordinated international effort is needed. The upcoming Year of Polar Prediction (YOPP) aims to address these challenges in the context of a broader initiative toward improved polar environmental predictions for both hemispheres.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...