ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
  • 1
    Publication Date: 2019-05-01
    Electronic ISSN: 2405-8440
    Topics: Natural Sciences in General
    Published by Cell Press
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-03-27
    Description: These data list the fish counts and densities observed using time-lapse cameras at the two DELOS observatory platforms, located at 1400 m water depth on the Angolan continental margin between February 2009 and July 2016. Timelapse photographs were captured from both the "Near Field" (NF; 7.90°S, 12.14°E) and "Far Field" (FF; 7.95°S, 12.28°E) DELOS observatories using a Kongsberg OE14-208 5.1 megapixel digital camera and a Kongsberg OE11-242 flash. Where appropriate: Fish counts are listed as no. individuals observed per photograph. Fish densities are listed as no. individuals observed per photograph, per calendar month, and multiplied by 1000. The DELOS platforms (DELOS A and DELOS B) are under Angolan jurisdiction and all activities must abide by Angolan law. As such, any person intending to publish DELOS data in any form is required to obtain prior permission from the National Concessionaire (Sonangol). Permission can be requested via Robert O'Brien at BP UK (Robert.OBrien@uk.bp.com) or the DELOS PI Dr. David Bailey (David.Bailey@glasgow.ac.uk). This process is not intended as a deterrent and applications to use DELOS data are welcomed. Participating Institutions: BP Exploration, BP Angola, University of Aberdeen, MBARI, National Oceanography Centre, INIP - Angola Instituto Nacional de Investigação Pesqueira (Angolan National Institute of Fisheries), Texas A&M University, Glasgow University
    Keywords: benthic observatory; Deep-ocean Environmental Long-term Observatory System; Deep sea; DELOS; Time series
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-11-08
    Keywords: benthic observatory; Date; Date/Time local; Day of the year; Days, cumulated; Deep-ocean Environmental Long-term Observatory System; Deep sea; DELOS; DELOS_B; Fish; Image number/name; Monitoring station; MONS; South Atlantic Ocean; Time series
    Type: Dataset
    Format: text/tab-separated-values, 35514 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-11-03
    Keywords: Area/locality; benthic observatory; Bythitidae; DATE/TIME; Deep-ocean Environmental Long-term Observatory System; Deep sea; DELOS; DELOS_A; DELOS_B; Event label; Fish indeterminata; Halosauridae; Ipnopidae; Liparidae; Macrouridae; Monitoring station; MONS; Month; Moridae; Ophidiidae; Rajidae; Sample ID; South Atlantic Ocean; Squalidae; Synaphobranchidae; Time series; Type; Year of imagery; Zoarcidae
    Type: Dataset
    Format: text/tab-separated-values, 3080 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-11-08
    Keywords: benthic observatory; Date; Date/Time local; Day of the year; Days, cumulated; Deep-ocean Environmental Long-term Observatory System; Deep sea; DELOS; DELOS_A; Fish; Image number/name; Monitoring station; MONS; South Atlantic Ocean; Time series
    Type: Dataset
    Format: text/tab-separated-values, 40698 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Milligan, Allen J; Varela, Diana E; Brzezinski, Mark A; Morel, Francois M M (2004): Dynamics of silicon metabolism and silicon isotopic discrimination in a marine diatom as a function of pCO2. Limnology and Oceanography, 49(2), 322-329, https://doi.org/10.4319/lo.2004.49.2.0322
    Publication Date: 2024-03-15
    Description: Opal accumulation rates in sediments have been used as a proxy for carbon flux, but there is poor understanding of the factors that regulate the Si quota of diatoms. Natural variation in silicon isotopes (delta.lc.gif - 54 Bytes30Si) in diatom frustules recovered from sediment cores are an alternative to opal mass for reconstructing diatom Si use and potential C export over geological timescales. Understanding the physiological factors that may influence the Si quota and the delta.lc.gif - 54 Bytes30Si isotopic signal is vital for interpreting biogenic silica as a paleoproxy. We investigated the influence of pCO2 on the Si quota, fluxes across the cell membrane, and frustule dissolution in the marine diatom Thalassiosira weissflogii and determined the effect that pCO2 has on the isotopic fractionation of Si. We found that our Si flux estimates mass balance and, for the first time, describe the Si budget of a diatom. The Si quota rose in cells grown with low pCO2 (100 ppm) compared with controls (370 ppm), and the increased quota was the result of greater retention of Si (i.e., lower losses of Si through efflux and dissolution). The ratio of efflux : influx decreased twofold as pCO2 decreased from 750 to 100 ppm. The efflux of silicon is shown to significantly bias measurements of silica dissolution rates determined by isotope dilution, but no effect on the Si isotopic enrichment factor (epsilon.lc.gif - 51 Bytes) was observed. The latter effect suggests that silicon isotopic discrimination in diatoms is set by the Si transport step rather than by the polymerization step. This observation supports the use of the v signal of biogenic silica as an indicator of the percentage utilization of silicic acid.
    Keywords: Alkalinity, total; Aragonite saturation state; Bicarbonate ion; Biogenic silicate quota in diatom; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chromista; Colorimetry; EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Event label; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Laboratory experiment; Laboratory strains; Measured; Milligan_etal_04/F2A; Milligan_etal_04/F2B; Milligan_etal_04/F5A; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Ochrophyta; Other metabolic rates; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phytoplankton; Radiation, photosynthetically active; Salinity; Silicate efflux in diatom; Silicate quota in diatom; Single species; Temperature, water; Thalassiosira weissflogii; Time in minutes
    Type: Dataset
    Format: text/tab-separated-values, 371 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-11-11
    Description: A new version of the World Digital Magnetic Anomaly Map, released last summer, gives greater insight into the structure and history of Earth's crust and upper mantle.
    Description: Published
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: N/A or not JCR
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Limnol. Oceanogr., 49(2)329., Bremerhaven, PANGAEA, 322
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Howell, K. L., Hilario, A., Allcock, A. L., Bailey, D. M., Baker, M., Clark, M. R., Colaco, A., Copley, J., Cordes, E. E., Danovaro, R., Dissanayake, A., Escobar, E., Esquete, P., Gallagher, A. J., Gates, A. R., Gaudron, S. M., German, C. R., Gjerde, K. M., Higgs, N. D., Le Bris, N., Levin, L. A., Manea, E., McClain, C., Menot, L., Mestre, N. C., Metaxas, A., Milligan, R. J., Muthumbi, A. W. N., Narayanaswamy, B. E., Ramalho, S. P., Ramirez-Llodra, E., Robson, L. M., Rogers, A. D., Sellanes, J., Sigwart, J. D., Sink, K., Snelgrove, P. V. R., Stefanoudis, P., V., Sumida, P. Y., Taylor, M. L., Thurber, A. R., Vieira, R. P., Watanabe, H. K., Woodall, L. C., & Xavier, J. R. A blueprint for an inclusive, global deep-sea ocean decade field program. Frontiers in Marine Science, 7, (2020): 584861, doi:10.3389/fmars.2020.584861.
    Description: The ocean plays a crucial role in the functioning of the Earth System and in the provision of vital goods and services. The United Nations (UN) declared 2021–2030 as the UN Decade of Ocean Science for Sustainable Development. The Roadmap for the Ocean Decade aims to achieve six critical societal outcomes (SOs) by 2030, through the pursuit of four objectives (Os). It specifically recognizes the scarcity of biological data for deep-sea biomes, and challenges the global scientific community to conduct research to advance understanding of deep-sea ecosystems to inform sustainable management. In this paper, we map four key scientific questions identified by the academic community to the Ocean Decade SOs: (i) What is the diversity of life in the deep ocean? (ii) How are populations and habitats connected? (iii) What is the role of living organisms in ecosystem function and service provision? and (iv) How do species, communities, and ecosystems respond to disturbance? We then consider the design of a global-scale program to address these questions by reviewing key drivers of ecological pattern and process. We recommend using the following criteria to stratify a global survey design: biogeographic region, depth, horizontal distance, substrate type, high and low climate hazard, fished/unfished, near/far from sources of pollution, licensed/protected from industry activities. We consider both spatial and temporal surveys, and emphasize new biological data collection that prioritizes southern and polar latitudes, deeper (〉 2000 m) depths, and midwater environments. We provide guidance on observational, experimental, and monitoring needs for different benthic and pelagic ecosystems. We then review recent efforts to standardize biological data and specimen collection and archiving, making “sampling design to knowledge application” recommendations in the context of a new global program. We also review and comment on needs, and recommend actions, to develop capacity in deep-sea research; and the role of inclusivity - from accessing indigenous and local knowledge to the sharing of technologies - as part of such a global program. We discuss the concept of a new global deep-sea biological research program ‘Challenger 150,’ highlighting what it could deliver for the Ocean Decade and UN Sustainable Development Goal 14.
    Description: Development of this paper was supported by funding from the Scientific Committee on Oceanic Research (SCOR) awarded to KH and AH as working group 159 co-chairs. KH, BN, and KS are supported by the UKRI funded One Ocean Hub NE/S008950/1. AH work is supported by the CESAM (UIDP/50017/2020 + 1432 UIDB/50017/2020) that is funded by Fundação para a Ciência e a Tecnologia (FCT)/MCTES through national funds. AA is supported by Science Foundation Ireland and the Marine Institute under the Investigators Program Grant Number SFI/15/IA/3100 co-funded under the European Regional Development Fund 2014–2020. AC is supported through the FunAzores -ACORES 01-0145-FEDER-000123 grant and by FCT through strategic project UID/05634/2020 and FCT and Direção-Geral de Politica do Mar (DGPM) through the project Mining2/2017/005. PE is funded by national funds (OE), through FCT in the scope of the framework contract foreseen in the numbers 4, 5 and 6 of the article 23, of the Decree-Law 57/2016, of August 29, changed by Law 57/2017, of July 19. SG research is supported by CNRS funds. CG is supported by an Independent Study Award and the Investment in Science Fund at WHOI. KG gratefully acknowledges support from Synchronicity Earth. LL is funded by the NOAA Office of Ocean Exploration and Research (NA19OAR0110305) and the US National Science Foundation (OCE 1634172). NM is supported by FCT and DGPM, through the project Mining2/2017/001 and the FCT grants CEECIND/00526/2017, UIDB/00350/2020 + UIDP/00350/2020. SR is funded by the FCTgrant CEECIND/00758/2017. JS is supported by ANID FONDECYT #1181153 and ANID Millennium Science Initiative Program #NC120030. JX research is funded by the European Union’s Horizon 2020 research and innovation program through the SponGES project (grant agreement no. 679849) and further supported by national funds through FCT within the scope of UIDB/04423/2020 and UIDP/04423/2020. The Natural Sciences and Engineering Council of Canada supports AM and PVRS. MB and the Deep-Ocean Stewardship Initiative are supported by Arcadia - A charitable fund of Lisbet Rausing and Peter Baldwin. BN work is supported by the NERC funded Arctic PRIZE NE/P006302/1.
    Keywords: Deep sea ; Blue economy ; Ocean Decade ; Biodivercity ; Essential ocean variables
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-10-27
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Boss, E., Sherwood, C. R., Hill, P., & Milligan, T. Advantages and limitations to the use of optical measurements to study sediment properties. Applied Sciences-Basel, 8(12), (2018):2692, doi:10.3390/app8122692.
    Description: Measurements of optical properties have been used for decades to study particle distributions in the ocean. They are useful for estimating suspended mass concentration as well as particle-related properties such as size, composition, packing (particle porosity or density), and settling velocity. Measurements of optical properties are, however, biased, as certain particles, because of their size, composition, shape, or packing, contribute to a specific property more than others. Here, we study this issue both theoretically and practically, and we examine different optical properties collected simultaneously in a bottom boundary layer to highlight the utility of such measurements. We show that the biases we are likely to encounter using different optical properties can aid our studies of suspended sediment. In particular, we investigate inferences of settling velocity from vertical profiles of optical measurements, finding that the effects of aggregation dynamics can seldom be ignored.
    Description: This work was supported by the Office of Naval Research and the United States Geological Survey Coastal and Marine Geology Program. The unique instrument platform and data acquisition system was designed and built by technical staff lead by Marinna Martini at the United States Geological Survey Woods Hole Coastal and Marine Science Center. This team was also responsible for deployment and recovery of the instrumentation. We thank the Woods Hole Oceanographic Institution (WHOI) MVCO staff for support during this experiment, and we thank the captains and crews of the R/V Connecticut and the R/V Tioga. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the United States Government. This paper has benefited significantly from insightful comments from D. Stramski, A. Aretxabaleta and two anonymous reviewers.
    Keywords: Particle dynamics ; Optical properties ; Suspended sediment
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...