ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-12-01
    Description: A numerical investigation of the interaction between a wind tunnel sidewall boundary layer and a thin low-aspect-ratio wing has been performed for transonic speeds and flight Reynolds numbers. A three-dimensional Navier-Stokes code was applied to calculate the flowfields. The results indicated that the sidewall boundary layer had a strong influence on the flowfield around the wing. The computed wing pressure distributions showed vast improvements over previous free-air computations, and were in excellent agreement with experimental data. The low momentum of the sidewall boundary layer resulted in higher pressures in the juncture region, which decreased the favorable spanwise pressure gradient. This significantly decreased the spanwise migration of the wing boundary layer. Weak vortices were predicted in both the upper and lower surface juncture regions. These vortices are believed to have been generated by lateral skewing of the streamlines in the approaching boundary layer.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 92-4036
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-12-01
    Description: A research program was conducted at NASA Langley Research Center to build and test a thin, pressure instrumented wing. The wing chosen was the canard of the X-29, which has a maximum thickness of 5 percent of chord. The wing has 90 pressure taps and was built utilizing an advanced laminated metal technique. It was tested in the 0.3-Meter Transonic Cryogenic Tunnel at transonic Mach numbers and over a wide range of Reynolds number. The data are compared with flight data and Navier-Stokes computational results.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 91-1626
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-12-01
    Description: A three dimensional Navier-Stokes solver is evaluated for transonic flow over a thin, swept, low-aspect ratio wing. The computational study was undertaken in support of a wind tunnel experimental program. The computational results are compared to experimental surface pressure data obtained in a cryogenic wind tunnel with an adaptive wall test section. The results show favorable agreement over a wide range of conditions, further the numerical results provide additional data of the complex three-dimensional flow field. Differences in the predictions and experiment suggest a need to conduct further experiments to evaluate the adaptive wall testing technique, and to model the tunnel sidewall boundary layer in the computations.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 91-1725
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The application of a sweeping jet actuator to a circulation control system was initiated by a risk reduction series of experiments to optimize the authority of a single sweeping jet actuator. The sweeping jet design was integrated into the existing Fundamental Aerodynamic Subsonic Transonic- Modular Active Control (FAST-MAC) model by replacing the steady blowing system with an array of thirty-nine sweeping jet cartridges. A constant slot height to wing chord ratio was similar to the steady blowing configuration resulting in each actuator having a unique in size for the sweeping jet configuration. While this paper will describe the scaling and optimization of the actuators for future high Reynolds number applications, the major focus of this effort was to target the transonic flight regime by increasing the amplitude authority of the actuator. This was accomplished by modifying the diffuser of the sweeping jet actuator, and this paper highlights twelve different diffuser designs. The experimental portion of this work was completed in the NASA Langley National Transonic Facility.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NF1676L-23034 , AIAA Aviation 2016; 13-17 Jun. 2016; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: A semi-span testing technique has been proposed for the NASA Langley Research Center's National Transonic Facility (NTF). Semi-span testing has several advantages including (1) larger model size, giving increased Reynolds number capability; (2) improved model fidelity, allowing ease of flap and slat positioning which ultimately improves data quality; and (3) reduced construction costs compared with a full-span model. In addition, the increased model size inherently allows for increased model strength, reducing aeroelastic effects at the high dynamic pressure levels necessary to simulate flight Reynolds numbers. The Energy Efficient Transport (EET) full-span model has been modified to become the EET semi-span model. The full-span EET model was tested extensively at both NASA LRC and NASA Ames Research Center. The available full-span data will be useful in validating the semi-span test strategy in the NTF. In spite of the advantages discussed above, the use of a semi-span model does introduce additional challenges which must be addressed in the testing procedure. To minimize the influence of the sidewall boundary layer on the flow over the semi-span model, the model must be off-set from the sidewall. The objective is to remove the semi-span model from the sidewall boundary layer by use of a stand-off geometry. When this is done however, the symmetry along the centerline of the full-span model is lost when the semi-span model is mounted on the wind tunnel sidewall. In addition, the large semi-span model will impose a significant pressure loading on the sidewall boundary layer, which may cause separation. Even under flow conditions where the sidewall boundary layer remains attached, the sidewall boundary layer may adversely effect the flow over the semi-span model. Also, the increased model size and sidewall mounting requires a modified wall correction strategy. With these issues in mind, the semi-span model has been well instrumented with surface pressure taps to obtain data on the expected complex flow field in the near wall region. This status report summarizes the progress to date on developing the semi-span geometry definition suitable for generating structured grids for the computational research. In addition, the progress on evaluating three state-of-the-art Navier-Stokes codes is presented.
    Keywords: AERODYNAMICS
    Type: NASA-CR-194479 , NAS 1.26:194479
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-11
    Description: The effect of discrete contour bumps on reducing the transonic drag at off-design conditions on an airfoil have been examined. The research focused on fully-turbulent flow conditions, at a realistic flight chord Reynolds number of 30 million. State-of-the-art computational fluid dynamics methods were used to design a new baseline airfoil, and a family of fixed contour bumps. The new configurations were experimentally evaluated in the 0.3-m Transonic Cryogenic Tunnel at the NASA Langley Research center, which utilizes an adaptive wall test section to minimize wall interference. The computational study showed that transonic drag reduction, on the order of 12% - 15%, was possible using a surface contour bump to spread a normal shock wave. The computational study also indicated that the divergence drag Mach number was increased for the contour bump applications. Preliminary analysis of the experimental data showed a similar contour bump effect, but this data needed to be further analyzed for residual wall interference corrections.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 2005-0462
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: A computational investigation was performed to support the development of a semispan model test capability in the NASA Langley Research Center's National Transonic Facility. This capability is desirable for the testing of advanced subsonic transport aircraft at full-scale Reynolds numbers. A state-of-the-art three-dimensional Navier-Stokes solver was used to examine methods to improve the flow over a semi-span configuration. First, a parametric study is conducted to examine the influence of the stand-off height on the flow over the semispan model. It is found that decreasing the stand-off height, below the maximum fuselage radius, improves the aerodynamic characteristics of the semi-span model. Next, active sidewall boundary layer control techniques are examined. Juncture region blowing jets, upstream tangential blowing, and sidewall suction are found to improve the flow over the aft portion of the semispan model. Both upstream blowing and suction are found to reduce the sidewall boundary layer separation. The resulting near surface streamline patterns are improved, and found to be quite similar to the full-span results. Both techniques however adversely affect the pitching moment coefficient.
    Keywords: Aerodynamics
    Type: NASA-TM-111583 , NAS 1.15:111583 , AIAA Applied Aerodynamics Conference; 17-20 Jun 1996; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The objectives of the present research are: (1) to develop a computational approach to support semi-span model test techniques in the NTF; and (2) to integrate this approach with the conduct of an experimental test program. To meet these objectives, the following approach is taken. A state-of-the-art three-dimensional Navier-Stokes solver is employed to compute the flow over both a full-span configuration and a semi-span configuration mounted on the sidewall of the tunnel. The computations are validated by making direct comparisons to experimental data for both configurations. Then, the semi-span computational results are compared to the full-span results to document how the flow over the semi-span configuration differs from that over the full-span configuration. The results of this comparative study will be used to provide a conceptual framework within which a semi-spa model test technique may be implemented in the NTF.
    Keywords: AERODYNAMICS
    Type: NASA-CR-199272 , NAS 1.26:199272
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: A new capability to test active flow control concepts and propulsion simulations at high Reynolds numbers in the National Transonic Facility at the NASA Langley Research Center is being developed. The first active flow control experiment was completed using the new FAST-MAC semi-span model to study Reynolds number scaling effects for several circulation control concepts. Testing was conducted over a wide range of Mach numbers, up to chord Reynolds numbers of 30 million. The model was equipped with four onboard flow control valves allowing independent control of the circulation control plenums, which were directed over a 15% chord simple-hinged flap. Preliminary analysis of the uncorrected lift data showed that the circulation control increased the low-speed maximum lift coefficient by 33%. At transonic speeds, the circulation control was capable of positively altering the shockwave pattern on the upper wing surface and reducing flow separation. Furthermore, application of the technique to only the outboard portion of the wing demonstrated the feasibility of a pneumatic based roll control capability.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 2012-0103 , NF1676L-13961 , 50th AIAA Aerospace Sciences Meeting and Exhibit; 9-12 Jan. 2012; Nashville, TN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The recent addition of a dual flow air delivery system to the NASA Langley National Transonic Facility was experimentally validated with a Dual Aerodynamic Nozzle semi-span model. This model utilized two Stratford calibration nozzles to characterize the weight flow system of the air delivery system. The weight flow boundaries for the air delivery system were identified at mildly cryogenic conditions to be 0.1 to 23 lbm/sec for the high flow leg and 0.1 to 9 lbm/sec for the low flow leg. Results from this test verified system performance and identified problems with the weight-flow metering system that required the vortex flow meters to be replaced at the end of the test.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 2011-3170 , NF1676L-12979 , 41st AIAA Fluid Dynamics Conference and Exhibit; 27-30 Jun. 2011; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...