ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2018-04-25
    Description: The ability to acquire rapid, dense and high quality 3D data has made terrestrial laser scanners (TLS) a desirable instrument for tasks demanding a high geometrical accuracy, such as geodetic deformation analyses. However, TLS measurements are influenced by systematic errors due to internal misalignments of the instrument. The resulting errors in the point cloud might exceed the magnitude of random errors. Hence, it is important to assure that the deformation analysis is not biased by these influences. In this study, we propose and evaluate several strategies for reducing the effect of TLS misalignments on deformation analyses. The strategies are based on the bundled in-situ self-calibration and on the exploitation of two-face measurements. The strategies are verified analyzing the deformation of the Onsala Space Observatory’s radio telescope’s main reflector. It is demonstrated that either two-face measurements as well as the in-situ calibration of the laser scanner in a bundle adjustment improve the results of deformation analysis. The best solution is gained by a combination of both strategies.
    Print ISSN: 1862-9016
    Electronic ISSN: 1862-9024
    Topics: Architecture, Civil Engineering, Surveying
    Published by De Gruyter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-26
    Description: The target-based point cloud registration and calibration of terrestrial laser scanners (TLSs) are mathematically modeled and solved by the least-squares adjustment. However, usual stochastic models are simplified to a large amount: They generally employ a single point measurement uncertainty based on the manufacturers’ specifications. This definition does not hold true for the target-based calibration and registration due to the fact that the target centroid is derived from multiple measurements and its uncertainty depends on the detection procedure as well. In this study, we empirically investigate the precision of the target centroid detection and define an empirical stochastic model in the form of look-up tables. Furthermore, we compare the usual stochastic model with the empirical stochastic model on several point cloud registration and TLS calibration experiments. There, we prove that the values of usual stochastic models are underestimated and incorrect, which can lead to multiple adverse effects such as biased results of the estimation procedures, a false a posteriori variance component analysis, false statistical testing, and false network design conclusions. In the end, we prove that some of the adverse effects can be mitigated by employing the a priori knowledge about the target centroid uncertainty behavior.
    Print ISSN: 1862-9016
    Electronic ISSN: 1862-9024
    Topics: Architecture, Civil Engineering, Surveying
    Published by De Gruyter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...