ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © Sears Foundation for Marine Research, 2005. This article is posted here by permission of Sears Foundation for Marine Research for personal use, not for redistribution. The definitive version was published in Journal of Marine Research 63 (2005): 1-7, doi:10.1357/0022240053693824.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 44078 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1980-01-01
    Print ISSN: 0022-3735
    Topics: Electrical Engineering, Measurement and Control Technology , Physics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2010-08-31
    Description: Salinity plays a key role in the determination of the thermodynamic properties of seawater and the new TEOS-101 standard provides a consistent and effective approach to dealing with relationships between salinity and these thermodynamic properties. However, there are a number of practical issues that arise in the application of TEOS-10, both in terms of accuracy and scope, including its use in the reduction of field data and in numerical models. First, in the TEOS-10 formulation for IAPSO Standard Seawater, the Gibbs function takes the Reference Salinity as its salinity argument, denoted SR, which provides a measure of the mass fraction of dissolved material in solution based on the Reference Composition approximation for Standard Seawater. We discuss uncertainties in both the Reference Composition and the Reference-Composition Salinity Scale on which Reference Salinity is reported. The Reference Composition provides a much-needed fixed benchmark but modified reference states will inevitably be required to improve the representation of Standard Seawater for some studies. The Reference-Composition Salinity Scale should remain unaltered to provide a stable representation of salinity for use with the TEOS-10 Gibbs function and in climate change detection studies. Second, when composition anomalies are present in seawater, no single salinity variable can fully represent the influence of dissolved material on the thermodynamic properties of seawater. We consider three distinct representations of salinity that have been used in previous studies and discuss the connections and distinctions between them. One of these variables provides the most accurate representation of density possible as well as improvements over Reference Salinity for the determination of other thermodynamic properties. It is referred to as "Density Salinity" and is represented by the symbol SAdens; it stands out as the most appropriate representation of salinity for use in dynamical physical oceanography. The other two salinity variables provide alternative measures of the mass fraction of dissolved material in seawater. "Solution Salinity", denoted SAsoln, is the most obvious extension of Reference Salinity to allow for composition anomalies; it provides a direct estimate of the mass fraction of dissolved material in solution. "Added-Mass Salinity", denoted SAadd, is motivated by a method used to report laboratory experiments; it represents the component of dissolved material added to Standard Seawater in terms of the mass of material before it enters solution. We also discuss a constructed conservative variable referred to as "Preformed Salinity", denoted S*, which will be useful in process-oriented numerical modelling studies. Finally, a conceptual framework for the incorporation of composition anomalies in numerical models is presented that builds from studies in which composition anomalies are simply ignored up to studies in which the influences of composition anomalies are accounted for using the results of biogeochemical models. 1TEOS-10: international thermodynamic equation of seawater 2010, http://www.teos-10.org.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-05-28
    Description: We introduce a simple algorithm to improve existing density surfaces to ensure that the resulting surfaces are as close to neutral as possible. This means the slopes at any point on the surfaces are close to neutral tangent planes – the directions along which layered stirring and mixing occurs – minimizing the fictitious diapycnal diffusivity. Inverse techniques and layered models have been used for decades to understand ocean circulation. The most-used density surfaces are potential density or neutral density surfaces. Both these density surfaces and all others produce a fictitious diapycnal diffusivity to some degree due to the helical nature of neutral trajectories – with the magnitude of this artificial diffusivity in some cases being larger than the values measured in the ocean. Here we show how this error can be reduced by up to four orders of magnitude and therefore becomes insignificant compared to measured values, thus providing surfaces which would produce more accurate results when used for inverse techniques.
    Print ISSN: 1812-0784
    Electronic ISSN: 1812-0792
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2009-06-10
    Print ISSN: 1812-0784
    Electronic ISSN: 1812-0792
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2008-12-12
    Description: A new seawater standard for oceanographic and engineering applications has been developed that consists of three independent thermodynamic potential functions, derived from extensive distinct sets of very accurate experimental data. The results have been formulated as Releases of the International Association for the Properties of Water and Steam, IAPWS (1996, 2006, 2008) and are expected to be adopted internationally by other organizations in subsequent years. In order to successfully perform computations such as phase equilibria from combinations of these potential functions, mutual compatibility and consistency of these independent mathematical functions must be ensured. In this article, a brief review of their separate development and ranges of validity is given. We analyse background details on the conditions specified at their reference states, the triple point and the standard ocean state, to ensure the mutual consistency of the different formulations, and the necessity and possibility of numerically evaluating metastable states of liquid water. Computed from this formulation in quadruple precision (128-bit floating point numbers), tables of numerical reference values are provided as anchor points for the consistent incorporation of additional potential functions in the future, and as unambiguous benchmarks to be used in the determination of numerical uncertainty estimates of double-precision implementations on different platforms that may be customized for special purposes.
    Print ISSN: 1812-0784
    Electronic ISSN: 1812-0792
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-01-06
    Description: Salinity plays a key role in the determination of the thermodynamic properties of seawater and the new TEOS-101 standard provides a consistent and effective approach to dealing with relationships between salinity and these thermodynamic properties. However, there are a number of practical issues that arise in the application of TEOS-10, both in terms of accuracy and scope, including its use in the reduction of field data and in numerical models. First, in the TEOS-10 formulation for IAPSO Standard Seawater, the Gibbs function takes the Reference Salinity as its salinity argument, denoted SR, which provides a measure of the mass fraction of dissolved material in solution based on the Reference Composition approximation for Standard Seawater. We discuss uncertainties in both the Reference Composition and the Reference-Composition Salinity Scale on which Reference Salinity is reported. The Reference Composition provides a much-needed fixed benchmark but modified reference states will inevitably be required to improve the representation of Standard Seawater for some studies. However, the Reference-Composition Salinity Scale should remain unaltered to provide a stable representation of salinity for use with the TEOS-10 Gibbs function and in climate change detection studies. Second, when composition anomalies are present in seawater, no single salinity variable can fully represent the influence of dissolved material on the thermodynamic properties of seawater. We consider three distinct representations of salinity that have been used in previous studies and discuss the connections and distinctions between them. One of these variables provides the most accurate representation of density possible as well as improvements over Reference Salinity for the determination of other thermodynamic properties. It is referred to as "Density Salinity" and is represented by the symbol SAdens; it stands out as the most appropriate representation of salinity for use in dynamical physical oceanography. The other two salinity variables provide alternative measures of the mass fraction of dissolved material in seawater. "Solution Salinity", denoted SAsoln, is the most obvious extension of Reference Salinity to allow for composition anomalies; it provides a direct estimate of the mass fraction of dissolved material in solution. "Added-Mass Salinity", denoted SAadd, is motivated by a method used to report laboratory experiments; it represents the component of dissolved material added to Standard Seawater in terms of the mass of material before it enters solution. We also discuss a constructed conservative variable referred to as "Preformed Salinity", denoted S∗, which will be useful in process-oriented numerical modelling studies. Finally, a conceptual framework for the incorporation of composition anomalies in numerical models is presented that builds from studies in which composition anomalies are simply ignored up to studies in which the influences of composition anomalies are accounted for using the results of biogeochemical models. 1TEOS-10: international Thermodynamic Equation of Seawater 2010, http://www.teos-10.org/.
    Print ISSN: 1812-0784
    Electronic ISSN: 1812-0792
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2009-02-09
    Description: To date, density and other thermodynamic properties of seawater have been calculated from Practical Salinity, S P. It is more accurate however to use Absolute Salinity, S A (the mass fraction of dissolved material in seawater). Absolute Salinity S A can be expressed in terms of Practical Salinity S P as S A=(35.165 04 g kg-1/35)S P+δ S A(φ, λ, p) where δ S A is the Absolute Salinity Anomaly as a function of longitude φ, latitude λ and pressure. When a seawater sample has standard composition (i.e. the ratios of the constituents of sea salt are the same as those of surface water of the North Atlantic), the Absolute Salinity Anomaly is zero. When seawater is not of standard composition, the Absolute Salinity Anomaly needs to be estimated; this anomaly is as large as 0.025 g kg−1 in the northernmost North Pacific. Here we provide an algorithm for estimating Absolute Salinity Anomaly for any location (φ, λ, p) in the world ocean. To develop this algorithm we use the Absolute Salinity Anomaly that is found by comparing the density calculated from Practical Salinity to the density measured in the laboratory. These estimates of Absolute Salinity Anomaly however are limited to the number of available observations (namely 811). To expand our data set we take advantage of approximate relationships between Absolute Salinity Anomaly and silicate concentrations (which are available globally). We approximate the laboratory-determined values of δ S A of the 811 seawater samples as a series of simple functions of the silicate concentration of the seawater sample and latitude; one function for each ocean basin. We use these basin-specific correlations and a digital atlas of silicate in the world ocean to deduce the Absolute Salinity Anomaly globally and this is stored as an atlas, δ S A (φ, λ, p). This atlas can be interpolated to the latitude, longitude and pressure of a seawater sample to estimate its Absolute Salinity Anomaly. For the 811 samples studied, ignoring the Absolute Salinity Anomaly results in a standard error in S A of 0.0107 g kg-1. Using our algorithm for δ S A reduces the error to 0.0048 g kg−1, reducing the mean square error by a factor of five. The number of sea water samples used to develop the correlation relationship is limited, and we hope that the algorithm and error can be improved as further data becomes available.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2008-07-11
    Description: A new seawater standard has been developed for oceanographic and engineering applications that consists of three independent thermodynamic potential functions, derived from extended distinct sets of very accurate experimental data. The results have been formulated as Releases of the International Association for the Properties of Water and Steam, IAPWS (1996, 2006, 2008) and are to be adopted internationally by other organizations in subsequent years. In order to successfully perform computations such as phase equilibria from combinations of these potential functions, mutual compatibility and consistency of these independent mathematical functions must be ensured. In this article, a brief review of their separate development and ranges of validity is given. We analyse background details on the conditions specified at their reference states, the triple point and the standard ocean state, to ensure the mutual consistency of the different formulations, and we consider the necessity and possibility of numerically evaluating metastable states of liquid water. Computed from this formulation in quadruple precision (128 bit floating point numbers), tables of numerical reference values are provided as anchor points for the consistent incorporation of additional potential functions in the future, and as unambiguous benchmarks to be used in the determination of numerical uncertainty estimates of double-precision implementations on different platforms that may be customized for special purposes.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...