ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2018-06-08
    Description: We have made heat capacity measurements of superfluid He-4 at temperatures very close to the lambda point, T(sub lambda) , in a constant heat flux, Q, when the helium sample is heated from above. In this configuration the helium enters a self-organized (SOC) heat transport state at a temperature T(sub SOC)(Q), which for Q greater than or = 100 nW/sq cm lies below T(sub lambda). At low Q we observe little or no deviation from the bulk Q = 0 heat capacity up to T(sub SOC)(Q); beyond this temperature the heat capacity appears to be sharply depressed, deviating dramatically from its bulk behaviour. This marks the formation and propagation of a SOC/superfluid two phase state, which we confirm with a simple model. The excellent agreement between data and model serves as an independent confirmation of the existence of the SOC state. As Q is increased (up to 6 micron W/sq cm) we observe a Q dependant depression in the heat capacity that occurs just below T(sub SOC)(Q), when the entire sample is still superfluid. This is due to the emergence of a large thermal resistance in the sample, which we have measured and used to model the observed heat capacity depression. Our measurements of the superfluid thermal resistivity are a factor of ten larger than previous measurements by Baddar et al.
    Keywords: Meteorology and Climatology
    Type: Proceedings of the 2003 NASA/JPL Workshop on Fundamental Physics in Space; JPL-Pub-04-13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-7357
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract We report on the design of a new prototype flight instrument that will be used to repeat previous Earth-based measurements of nonlinear heat transport near the superfluid transition in the microgravity laboratory. Since this nonlinear conductivity is associated with dynamic limitations to the divergent correlation length, and since gravitational acceleration also limits the correlation length's divergence, we anticipate that the nonlinear conductivity will depend strongly on gravitational acceleration. The apparatus, data taking procedure, systematic corrections, and error sources are discussed here.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of low temperature physics 121 (2000), S. 643-652 
    ISSN: 1573-7357
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Measurements of heat transport at the transition from perfect thermal superconductivity to nonlinear heat diffusion in pure 4 He provide a very sensitive probe of matter wave coherence. Superfluid heat transport is proportional to the product of the superfluid density and the superfluid velocity, which are both directly related to the superfluid order parameter. From dynamic scaling theory, the correlation length near the superfluid transition provides a measure of the length over which phase fluctuations of the order parameter persist. Our measurements suggest that both the hydrostatic pressure variation within the liquid helium column, together with the heat flux Q, limit the otherwise divergent correlation length near the superfluid transition. Future measurements planned for the microgravity laboratory will provide the fast extensive experimental test of a renormalized, field theoretic description of heat transport near the superfluid transition. It will also provide a conclusive experimental study of the influence of hydrostatic pressure effects and dynamical effects on the correlation length. A new class of microgravity experiments is proposed that will permit measurements to within 10 pK of the superfluid transition temperature, allowing an entirely new class of ultra-accurate scientific investigations to be performed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...