ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
  • 1
    Monograph available for loan
    Monograph available for loan
    New York [u.a.] : Springer
    Call number: PIK A 100-15-0018
    Description / Table of Contents: Contents: Maximizing chances of publication -- Essential steps before writing a paper -- Drafting papers -- Complex studies -- Linguistic points -- Covering letters and referees' objections -- Other kinds of written scientific communication -- Summary
    Type of Medium: Monograph available for loan
    Pages: IX, 112 S. : graph. Darst.
    ISBN: 9781441997876
    Location: A 18 - must be ordered
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-06-19
    Description: The Big Naryn Complex (BNC) in the East Djetim-Too Range of the Kyrgyz Middle Tianshan block is a tectonized, at least 2 km thick sequence of predominantly felsic to intermediate volcanic rocks intruded by porphyric rhyolite sills. It overlies a basement of metamorphic rocks and is overlain by late Neoproterozoic Djetim-Too Formation sediments; these also occur as tectonic intercalations in the BNC. The up to ca. 1100 m thick Lower Member is composed of predominantly rhyolites-to-dacites and minor basalts, while the at least 900 m thick pyroclastic Upper Member is dominated by rhyolitic-to-dacitic ignimbrites. Porphyric rhyolite sills are concentrated at the top of the Lower Member. A Lower Member rhyolite and a sill sample have LA-ICP-MS U–Pb zircon crystallization ages of 726.1 ± 2.2 Ma and 720.3 ± 6.5 Ma, respectively, showing that most of the magmatism occurred within a short time span in the late Tonian–early Cryogenian. Inherited zircons in the sill sample have Neoarchean (2.63, 2.64 Ga), Paleo- (2.33–1.81 Ga), Meso- (1.55 Ga), and Neoproterozoic (ca. 815 Ma) ages, and were derived from a heterogeneous Kuilyu Complex basement. A 1751 ± 7 Ma 40Ar/39Ar age for amphibole from metagabbro is the age of cooling subsequent to Paleoproterozoic metamorphism of the Kuilyu Complex. The large amount of pyroclastic rocks, and their major and trace element compositions, the presence of Neoarchean to Neoproterozoic inherited zircons and a depositional basement of metamorphic rocks point to formation of the BNC in a continental magmatic arc setting.
    Description: Akademie Věd České Republiky http://dx.doi.org/10.13039/501100004240
    Description: Universität Potsdam (1031)
    Keywords: ddc:552.2 ; Tianshan orogenic belt ; Big Naryn complex ; Tonian–Cryogenian ; Magmatic arc ; Calc-alkaline ; Kuilyu complex
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 115 (2001), S. 2051-2054 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The total atomization energy at absolute zero, (TAE0) of benzene, C6H6, was computed fully ab initio by means of W2h theory as 1306.6 kcal/mol, to be compared with the experimentally derived value 1305.7±0.7 kcal/mol. The computed result includes contributions from inner-shell correlation (7.1 kcal/mol), scalar relativistic effects (−1.0 kcal/mol), atomic spin–orbit splitting (−0.5 kcal/mol), and the anharmonic zero-point vibrational energy (62.1 kcal/mol). The largest-scale calculations involved are CCSD/cc-pV5Z and CCSD(T)/cc-pVQZ; basis set extrapolations account for 6.3 kcal/mol of the final result. Performance of more approximate methods has been analyzed. Our results suggest that, even for systems the size of benzene, chemically accurate molecular atomization energies can be obtained from fully first-principles calculations, without resorting to corrections or parameters derived from experiment. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 114 (2001), S. 3408-3420 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We propose large-core correlation-consistent (cc) pseudopotential basis sets for the heavy p-block elements Ga–Kr and In–Xe. The basis sets are of cc-pVTZ and cc-pVQZ quality, and have been optimized for use with the large-core (valence-electrons only) Stuttgart–Dresden–Bonn (SDB) relativistic pseudopotentials. Validation calculations on a variety of third-row and fourth-row diatomics suggest them to be comparable in quality to the all-electron cc-pVTZ and cc-pVQZ basis sets for lighter elements. Especially the SDB-cc-pVQZ basis set in conjunction with a core polarization potential (CPP) yields excellent agreement with experiment for compounds of the later heavy p-block elements. For accurate calculations on Ga (and, to a lesser extent, Ge) compounds, explicit treatment of 13 valence electrons appears to be desirable, while it seems inevitable for In compounds. For Ga and Ge, we propose correlation consistent basis sets extended for (3d) correlation. For accurate calculations on organometallic complexes of interest to homogenous catalysis, we recommend a combination of the standard cc-pVTZ basis set for first- and second-row elements, the presently derived SDB-cc-pVTZ basis set for heavier p-block elements, and for transition metals, the small-core [6s5p3d] Stuttgart–Dresden basis set-relativistic effective core potential combination supplemented by (2f1g) functions with exponents given in the Appendix to the present paper. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 113 (2000), S. 1348-1358 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Core correlation and scalar relativistic contributions to the atomization energy of 120 first- and second-row molecules have been determined using coupled cluster and averaged coupled-pair functional methods and the MTsmall core correlation basis set. These results are used to parametrize an improved version of a previously proposed bond order scheme for estimating contributions to atomization energies. The resulting model, which requires negligible computational effort, reproduces the computed core correlation contributions with 88%–94% average accuracy (depending on the type of molecule), and the scalar relativistic contribution with 82%–89% accuracy. This permits high-accuracy thermochemical calculations at greatly reduced computational cost. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 114 (2001), S. 6014-6029 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The performance of two recent ab initio computational thermochemistry schemes, W1 and W2 theory [J. M. L. Martin and G. de Oliveira, J. Chem. Phys. 111, 1843 (1999)], is assessed for an enlarged sample of thermochemical data consisting of the ionization potentials and electron affinities in the G2-1 and G2-2 sets, as well as the heats of formation in the G2-1 and a subset of the G2-2 set. We find W1 theory to be several times more accurate for ionization potentials and electron affinities than commonly used (and less expensive) computational thermochemistry schemes such as G2, G3, and CBS-QB3: W2 theory represents a slight improvement for electron affinities but no significant one for ionization potentials. The use of a two-point A+B/L5 rather than a three-point A+B/CL extrapolation for the self-consistent field (SCF) component greatly enhances the numerical stability of the W1 method for systems with slow basis set convergence. Inclusion of first-order spin–orbit coupling is essential for accurate ionization potentials and electron affinities involving degenerate electronic states: Inner-shell correlation is somewhat more important for ionization potentials than for electron affinities, while scalar relativistic effects are required for the highest accuracy. The mean deviation from experiment for the G2-1 heats of formation is within the average experimental uncertainty. W1 theory appears to be a valuable tool for obtaining benchmark quality proton affinities. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 100 (1994), S. 9002-9006 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The potential energy surface for the B2C molecule and the potential energy curve for the ground state of BC have been investigated using full-valence complete active space SCF (CASSCF), augmented coupled cluster [CCSD(T)] and multireference treatments. The ground state of B2C is an extraordinarily stable ring (∑ De=261.6±1 kcal/mol) with two 2-electron π systems. The first excited state is linear BCB (1Σ+g), which is essentially biconfigurational due to a (4σg)–(3σu) near degeneracy. Anharmonic spectroscopic constants were obtained from quartic force fields at the CCSD(T) level with a correlation-consistent basis set of [4s3p2d1f] quality. A severe Fermi resonance exists between the bending and symmetric stretching modes. All computed intensities are fairly weak. Spectroscopic constants for BC using elaborate multireference techniques were very well reproduced using the CCSD(T) method with a spin-restricted Hartree–Fock reference configuration, but not with an unrestricted Hartree–Fock reference. This suggests that even moderate levels of spin contamination that do not significantly affect relative energies may have a detrimental effect on computed spectroscopic constants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 100 (1994), S. 8186-8193 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The total atomization energies (∑De values), geometries, and harmonic frequencies for a number of experimentally well-described molecules have been calculated at the CCSD(T) (coupled cluster) level using Dunning's correlation-consistent cc-pVDZ([3s2p1d]), cc-pVTZ([4s3p2d1f]), and cc-pVQZ([5s4p3d2f1g]) basis sets. Additivity correction are proposed for binding energies and geometries. Using a three-term additive correction of the form proposed by Martin [J. Chem. Phys. 97, 5012 (1992)] mean absolute errors in ∑De are 0.46 kcal/mol for the cc-pVQZ, 0.93 for the cc-pVTZ, and 2.59 for the c-pVDZ basis sets. The latter figure implies that, although unsuitable for quantitatively accurate work, three-term corrected CCSD(T)/cc-pVDZ binding energies can still be used for a rough estimate when the cost of larger basis set calculations would be prohibitive. CCSD(T)/cc-pVQZ calculations reproduce bond lengths to 0.001 A(ring) for single bonds, and 0.003 A(ring) for multiple bonds; remaining error is probably partly due to core–core and core–valence correlation. CCSD(T)/cc-pVTZ calculations result in additional overestimates of 0.001 A(ring) for single, 0.003 A(ring) for double, and 0.004 A(ring) for triple bonds. CCSD(T)/cc-pVDZ calculations result in further overestimates of 0.01 A(ring) for single bonds, and 0.02 A(ring) for multiple bonds.CCSD(T)/cc-pVDZ harmonic frequencies are in surprisingly good agreement with experiment, except for pathological cases like the umbrella mode in NH3. Both CCSD(T)/cc-pVTZ and CCSD(T)/cc-pVQZ harmonic frequencies generally agree with experiment to 10 cm−1 or better; performance of cc-pVQZ is somewhat superior on multiple bonds or the umbrella mode in NH3. Again, a source of remaining error appears to be core correlation. The use of MP2/6-31G* reference geometries in the ∑De calculation can result in fairly substantial errors in the uncorrected ∑De values for systems with cumulated multiple bonds. These errors however appear to be largely absorbed by the three-term correction. Use of CCSD(T)/cc-pVDZ reference geometries appears to have no detrimental effect on computed ∑De values and is recommended for cases where only single-point calculations in the cc-pVTZ basis set are possible.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 102 (1995), S. 254-261 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A very accurate ab initio quartic force field for CH4 and its isotopomers is presented. The quartic force field was determined with the singles and doubles coupled-cluster procedure that includes a quasiperturbative estimate of the effects of connected triple excitations, CCSD(T), using the correlation consistent polarized valence triple zeta, cc-pVTZ, basis set. Improved quadratic force constants were evaluated with the correlation consistent polarized valence quadruple zeta, cc-pVQZ, basis set. Fundamental vibrational frequencies are determined using second-order perturbation theory anharmonic analyses. All fundamentals of CH4 and isotopomers for which accurate experimental values exist and for which there is not a large Fermi resonance, are predicted to within ±6 cm−1. It is thus concluded that our predictions for the harmonic frequencies and the anharmonic constants are the most accurate estimates available. It is also shown that using cubic and quartic force constants determined with the correlation consistent polarized double zeta, cc-pVDZ, basis set in conjunction with the cc-pVQZ quadratic force constants and equilibrium geometry leads to accurate predictions for the fundamental vibrational frequencies of methane, suggesting that this approach may be a viable alternative for larger molecules. Using CCSD(T), core correlation is found to reduce the CH4 re by 0.0015 A(ring). Our best estimate for re is 1.0862±0.0005 A(ring). © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...