ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2015-03-17
    Description: At the end of waste disposal in 2005, a temporary mineral system was constructed to cover the waste body of the municipal landfill in Rastorf (N Germany). The aim of this study was to evaluate the effectiveness of this temporary cover system in limiting the infiltration of surface water into the waste body. The numerical modeling for the hydrological year 2012 was performed in FEFLOW 6.0. The required input data for modeling were achieved by laboratory measurements of the saturated hydraulic conductivity and the water retention characteristics of the mineral layers. The assumed initial and boundary conditions were based on in-situ measurements of matrix potential and volumetric water content at three different measuring points by tensiometers, FDR sensors and observed meteorological conditions. The model was applied according to Darcy's and Richards' equations for variably saturated flow. Our results allowed assessing the components of water balance for a temporary cover system, especially water seepage into the waste body. The correlation between the measured and modeled volumetric soil water content in the layered temporary cover system was observed ( R 2 = 0.56 to 0.90). Deviations between the measured and modeled values are superficially related to the soil´s heterogeneity. In conclusion, the measured and modeled water balance parameters indicate that the temporary coverage system remains effective in limiting the infiltration rate. However, our studies revealed that the calculated and measured water seepage exceeded the values allowable by the German regulations. Additional studies have to assess variations in the soil water characteristics caused by weather-related wetting and drying cycles and influence of waste settlement changing the profile of slope.
    Print ISSN: 1436-8730
    Electronic ISSN: 1522-2624
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...