ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2017-06-27
    Description: Artificial light at night (ALAN) is recognized as a contributor to environmental change and a biodiversity threat on a global scale. Despite its widespread use and numerous potential ecological effects, few studies have investigated the impacts on aquatic ecosystems and primary producers. Light is a source of energy and information for benthic autotrophs that form the basis of food webs in clear, shallow waters. Artificial night-time illumination may thus affect biomass and community composition of primary producers. We experimentally mimicked the light conditions of a light-polluted area (approximately 20 lux, white LED) in streamside flumes on a sub-alpine stream. We compared the biomass and community composition of periphyton grown under ALAN with periphyton grown under a natural light regime in two seasons using communities in early (up to 3 weeks) and later (4–6 weeks) developmental stages. In early periphyton, ALAN decreased the biomass of autotrophs in both spring (57% at 3 weeks) and autumn (43% at 2 weeks), decreased the proportion of cyanobacteria in spring (54%), and altered the proportion of diatoms in autumn (11% decrease at 2 weeks and 5% increase at 3 weeks). No effects of ALAN were observed for later periphyton. Further work is needed to test whether streams with frequent physical disturbances that reset the successional development of periphyton are more affected by ALAN than streams with more stable conditions. As periphyton is a fundamental component of stream ecosystems, the impact of ALAN might propagate to higher trophic levels and/or affect critical ecosystem functions.
    Print ISSN: 0024-3590
    Electronic ISSN: 1939-5590
    Topics: Biology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: Artificial light at night (ALAN) is increasing exponentially worldwide, accelerated by the transition to new efficient lighting technologies. However, ALAN and resulting light pollution can cause unintended physiological consequences. In vertebrates, production of melatonin—the “hormone of darkness” and a key player in circadian regulation—can be suppressed by ALAN. In this paper, we provide an overview of research on melatonin and ALAN in vertebrates. We discuss how ALAN disrupts natural photic environments, its effect on melatonin and circadian rhythms, and different photoreceptor systems across vertebrate taxa. We then present the results of a systematic review in which we identified studies on melatonin under typical light-polluted conditions in fishes, amphibians, reptiles, birds, and mammals, including humans. Melatonin is suppressed by extremely low light intensities in many vertebrates, ranging from 0.01–0.03 lx for fishes and rodents to 6 lx for sensitive humans. Even lower, wavelength-dependent intensities are implied by some studies and require rigorous testing in ecological contexts. In many studies, melatonin suppression occurs at the minimum light levels tested, and, in better-studied groups, melatonin suppression is reported to occur at lower light levels. We identify major research gaps and conclude that, for most groups, crucial information is lacking. No studies were identified for amphibians and reptiles and long-term impacts of low-level ALAN exposure are unknown. Given the high sensitivity of vertebrate melatonin production to ALAN and the paucity of available information, it is crucial to research impacts of ALAN further in order to inform effective mitigation strategies for human health and the wellbeing and fitness of vertebrates in natural ecosystems.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...