ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-07-03
    Description: Angiogenesis, the growth of new blood vessels from pre-existing vasculature, is a key process in several pathological conditions, including tumour growth and age-related macular degeneration. Vascular endothelial growth factors (VEGFs) stimulate angiogenesis and lymphangiogenesis by activating VEGF receptor (VEGFR) tyrosine kinases in endothelial cells. VEGFR-3 (also known as FLT-4) is present in all endothelia during development, and in the adult it becomes restricted to the lymphatic endothelium. However, VEGFR-3 is upregulated in the microvasculature of tumours and wounds. Here we demonstrate that VEGFR-3 is highly expressed in angiogenic sprouts, and genetic targeting of VEGFR-3 or blocking of VEGFR-3 signalling with monoclonal antibodies results in decreased sprouting, vascular density, vessel branching and endothelial cell proliferation in mouse angiogenesis models. Stimulation of VEGFR-3 augmented VEGF-induced angiogenesis and sustained angiogenesis even in the presence of VEGFR-2 (also known as KDR or FLK-1) inhibitors, whereas antibodies against VEGFR-3 and VEGFR-2 in combination resulted in additive inhibition of angiogenesis and tumour growth. Furthermore, genetic or pharmacological disruption of the Notch signalling pathway led to widespread endothelial VEGFR-3 expression and excessive sprouting, which was inhibited by blocking VEGFR-3 signals. Our results implicate VEGFR-3 as a regulator of vascular network formation. Targeting VEGFR-3 may provide additional efficacy for anti-angiogenic therapies, especially towards vessels that are resistant to VEGF or VEGFR-2 inhibitors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tammela, Tuomas -- Zarkada, Georgia -- Wallgard, Elisabet -- Murtomaki, Aino -- Suchting, Steven -- Wirzenius, Maria -- Waltari, Marika -- Hellstrom, Mats -- Schomber, Tibor -- Peltonen, Reetta -- Freitas, Catarina -- Duarte, Antonio -- Isoniemi, Helena -- Laakkonen, Pirjo -- Christofori, Gerhard -- Yla-Herttuala, Seppo -- Shibuya, Masabumi -- Pytowski, Bronislaw -- Eichmann, Anne -- Betsholtz, Christer -- Alitalo, Kari -- 5 R01 HL075183-02/HL/NHLBI NIH HHS/ -- England -- Nature. 2008 Jul 31;454(7204):656-60. doi: 10.1038/nature07083. Epub 2008 Jun 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular/Cancer Biology Laboratory and Ludwig Institute for Cancer Research, Biomedicum Helsinki and the Haartman Institute University of Helsinki, PO Box 63 (Haartmaninkatu 8), 00014 Helsinki, Finland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18594512" target="_blank"〉PubMed〈/a〉
    Keywords: Angiogenesis Inhibitors/pharmacology ; Animals ; Antibodies, Monoclonal/pharmacology ; Cell Line, Tumor ; Dipeptides/pharmacology ; Down-Regulation ; Endothelial Cells/metabolism ; Female ; Gene Expression Regulation, Neoplastic/drug effects ; Humans ; Ligands ; Mice ; Mice, Inbred BALB C ; Mice, Transgenic ; Neoplasms/*blood supply/drug therapy ; Neovascularization, Pathologic/genetics/*metabolism ; Receptors, Notch/metabolism ; Signal Transduction ; Vascular Endothelial Growth Factor Receptor-3/*antagonists & ; inhibitors/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...