ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-04-16
    Description: Understanding the processes that determine aboveground biomass (AGB) in Amazonian forests is important for predicting the sensitivity of these ecosystems to environmental change and for designing and evaluating dynamic global vegetation models (DGVMs). AGB is determined by inputs from woody productivity (woody NPP) and the rate at which carbon is lost through tree mortality. Here, we test whether two direct metrics of tree mortality (the absolute rate of woody biomass loss and the rate of stem mortality) and/or woody NPP, control variation in AGB among 167 plots in intact forest across Amazonia. We then compare these relationships and the observed variation in AGB and woody NPP with the predictions of four DGVMs. The observations show that stem mortality rates, rather than absolute rates of woody biomass loss, are the most important predictor of AGB, which is consistent with the importance of stand size-structure for determining spatial variation in AGB. The relationship between stem mortality rates and AGB varies among different regions of Amazonia, indicating that variation in wood density and height/diameter relationships also influence AGB. In contrast to previous findings, we find that woody NPP is not correlated with stem mortality rates, and is weakly positively correlated with AGB. Across the four models, basin-wide average AGB is similar to the mean of the observations. However, the models consistently overestimate woody NPP, and poorly represent the spatial patterns of both AGB and woody NPP estimated using plot data. In marked contrast to the observations, DGVMs typically show strong positive relationships between woody NPP and AGB. Resolving these differences will require incorporating forest size structure, mechanistic models of stem mortality and variation in functional composition in DGVMs. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-05-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bongers, F -- Chazdon, R -- Poorter, L -- Pena-Claros, M -- New York, N.Y. -- Science. 2015 May 8;348(6235):642-3. doi: 10.1126/science.348.6235.642-c.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Forest Ecology and Management Group, Wageningen University. 6700AH, Wageningen, Netherlands. Frans.Bongers@wur.nl. ; Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269-3043, USA. ; Forest Ecology and Management Group, Wageningen University. 6700AH, Wageningen, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25953999" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture/*trends ; Animals ; Brazil ; Carbon Cycle ; Cattle ; *Forests ; Humans
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-02-04
    Description: Land-use change occurs nowhere more rapidly than in the tropics, where the imbalance between deforestation and forest regrowth has large consequences for the global carbon cycle. However, considerable uncertainty remains about the rate of biomass recovery in secondary forests, and how these rates are influenced by climate, landscape, and prior land use. Here we analyse aboveground biomass recovery during secondary succession in 45 forest sites and about 1,500 forest plots covering the major environmental gradients in the Neotropics. The studied secondary forests are highly productive and resilient. Aboveground biomass recovery after 20 years was on average 122 megagrams per hectare (Mg ha(-1)), corresponding to a net carbon uptake of 3.05 Mg C ha(-1) yr(-1), 11 times the uptake rate of old-growth forests. Aboveground biomass stocks took a median time of 66 years to recover to 90% of old-growth values. Aboveground biomass recovery after 20 years varied 11.3-fold (from 20 to 225 Mg ha(-1)) across sites, and this recovery increased with water availability (higher local rainfall and lower climatic water deficit). We present a biomass recovery map of Latin America, which illustrates geographical and climatic variation in carbon sequestration potential during forest regrowth. The map will support policies to minimize forest loss in areas where biomass resilience is naturally low (such as seasonally dry forest regions) and promote forest regeneration and restoration in humid tropical lowland areas with high biomass resilience.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Poorter, Lourens -- Bongers, Frans -- Aide, T Mitchell -- Almeyda Zambrano, Angelica M -- Balvanera, Patricia -- Becknell, Justin M -- Boukili, Vanessa -- Brancalion, Pedro H S -- Broadbent, Eben N -- Chazdon, Robin L -- Craven, Dylan -- de Almeida-Cortez, Jarcilene S -- Cabral, George A L -- de Jong, Ben H J -- Denslow, Julie S -- Dent, Daisy H -- DeWalt, Saara J -- Dupuy, Juan M -- Duran, Sandra M -- Espirito-Santo, Mario M -- Fandino, Maria C -- Cesar, Ricardo G -- Hall, Jefferson S -- Hernandez-Stefanoni, Jose Luis -- Jakovac, Catarina C -- Junqueira, Andre B -- Kennard, Deborah -- Letcher, Susan G -- Licona, Juan-Carlos -- Lohbeck, Madelon -- Marin-Spiotta, Erika -- Martinez-Ramos, Miguel -- Massoca, Paulo -- Meave, Jorge A -- Mesquita, Rita -- Mora, Francisco -- Munoz, Rodrigo -- Muscarella, Robert -- Nunes, Yule R F -- Ochoa-Gaona, Susana -- de Oliveira, Alexandre A -- Orihuela-Belmonte, Edith -- Pena-Claros, Marielos -- Perez-Garcia, Eduardo A -- Piotto, Daniel -- Powers, Jennifer S -- Rodriguez-Velazquez, Jorge -- Romero-Perez, I Eunice -- Ruiz, Jorge -- Saldarriaga, Juan G -- Sanchez-Azofeifa, Arturo -- Schwartz, Naomi B -- Steininger, Marc K -- Swenson, Nathan G -- Toledo, Marisol -- Uriarte, Maria -- van Breugel, Michiel -- van der Wal, Hans -- Veloso, Maria D M -- Vester, Hans F M -- Vicentini, Alberto -- Vieira, Ima C G -- Bentos, Tony Vizcarra -- Williamson, G Bruce -- Rozendaal, Danae M A -- England -- Nature. 2016 Feb 11;530(7589):211-4. doi: 10.1038/nature16512. Epub 2016 Feb 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Forest Ecology and Forest Management Group, Wageningen University, PO Box 47, 6700 AA Wageningen, The Netherlands. ; PO Box 23360, Department of Biology, University of Puerto Rico, San Juan, PR 00931-3360, Puerto Rico. ; Spatial Ecology and Conservation Lab, Department of Geography, University of Alabama, Tuscaloosa, Alabama 35487, USA. ; Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autonoma de Mexico, CP58190, Morelia, Michoacan, Mexico. ; Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912, USA. ; Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269, USA. ; Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Avenida Padua Dias 11, 13418-900, Piracicaba, Sao Paulo, Brazil. ; SI ForestGEO, Smithsonian Tropical Research Institute, Roosevelt Avenue, Tupper Building - 401, Balboa, Ancon, Panama, Panama ; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany. ; Institute for Biology, Leipzig University, Johannisallee 21, 04103 Leipzig, Germany. ; Departamento de Botanica, Universidade Federal de Pernambuco, Pernambuco, CEP 50670-901, Brazil. ; Department of Sustainability Science, El Colegio de la Frontera Sur, Unidad Campeche, Av. Rancho Poligono 2A, Parque Industrial Lerma, Campeche, Campeche, CP 24500, Mexico. ; Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, Louisiana 70130, USA. ; Smithsonian Tropical Research Institute, Roosevelt Avenue, Tupper Building - 401, Balboa, Ancon, Panama, Panama ; Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, UK. ; Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, South Carolina 29634, USA. ; Centro de Investigacion Cientifica de Yucatan, AC, Unidad de Recursos Naturales, Calle 43 No. 130, Colonia Chuburna de Hidalgo, CP 97200, Merida, Yucatan, Mexico. ; Earth and Atmospheric Sciences Department, University of Alberta, Edmonton, Alberta T6G 2E3, Canada. ; Departamento de Biologia Geral, Universidade Estadual de Montes Claros, Montes Claros, Minas Gerais, CEP 39401-089, Brazil. ; Fondo Patrimonio Natural para la Biodiversidad y Areas Protegidas, Calle 72 No. 12-65 piso 6, Bogota, Colombia. ; Biological Dynamics of Forest Fragments Project, Environmental Dynamics Research Coordination, Instituto Nacional de Pesquisas da Amazonia, Manaus, Amazonas, CEP 69067-375, Brazil. ; Centre for Crop Systems Analysis, Wageningen University, PO Box 430, 6700 AK Wageningen, The Netherlands. ; Knowledge, Technology and Innovation Group, Wageningen University, PO Box 8130, 6700 EW Wageningen, The Netherlands. ; Coordenacao de Tecnologia e Inovacao, Instituto Nacional de Pesquisas da Amazonia, Avenida Andre Araujo, 2936 - Aleixo, 69060-001 Manaus, Brazil. ; Department of Physical and Environmental Sciences, Colorado Mesa University, 1100 North Avenue, Grand Junction, Colorado 81501, USA. ; Department of Environmental Studies, Purchase College (State University of New York), Purchase, New York 10577, USA. ; Instituto Boliviano de Investigacion Forestal (IBIF), FCA-UAGRM, Casilla 6204, Santa Cruz de la Sierra, Bolivia. ; World Agroforestry Centre (ICRAF), PO Box 30677 - 00100, Nairobi, Kenya. ; Department of Geography, University of Wisconsin-Madison, 550 North Park Street, Madison, Wisconsin 53706, USA. ; Departamento de Ecologia y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, Mexico 04510 DF, Mexico. ; Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York 10027, USA. ; Section of Ecoinformatics and Biodiversity, Department of Bioscience, Aarhus University, Aarhus 8000, Denmark. ; Departamento de Ecologia, Instituto de Biociencias, Universidade de Sao Paulo, Rua do Matao, travessa 14, No. 321, Sao Paulo, CEP 05508-090, Brazil. ; Universidade Federal do Sul da Bahia, Centro de Formacao em Ciencias Agroflorestais, Itabuna-BA, 45613-204, Brazil. ; Department of Ecology, Evolution, &Behavior, University of Minnesota, Saint Paul, Minnesota 55108, USA. ; Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota 55108, USA. ; School of Social Sciences, Geography Area, Universidad Pedagogica y Tecnologica de Colombia (UPTC), Tunja, Colombia. ; Department of Geography, 4841 Ellison Hall, University of California, Santa Barbara, California 93106, USA. ; Department of Biology, University of Maryland, College Park, Maryland 20742, USA. ; Yale-NUS College, 12 College Avenue West, Singapore 138610. ; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 11754. ; Departamento de Agricultura, Sociedad y Ambiente, El Colegio de la Frontera Sur - Unidad Villahermosa, 86280 Centro, Tabasco, Mexico. ; Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, PO Box 94248, 1090 GE Amsterdam, The Netherlands. ; Bonhoeffer College, Bruggertstraat 60, 7545 AX Enschede, The Netherlands. ; Museu Paraense Emilio Goeldi, CP 399, CEP 66040-170, Belem, Brazil. ; Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803-1705, USA. ; Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S 0A2, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26840632" target="_blank"〉PubMed〈/a〉
    Keywords: *Biomass ; Carbon/metabolism ; Carbon Cycle ; Carbon Sequestration ; Ecology ; *Forests ; Humidity ; Latin America ; Rain ; Time Factors ; Trees/*growth & development/metabolism ; *Tropical Climate
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-03-20
    Description: Atmospheric carbon dioxide records indicate that the land surface has acted as a strong global carbon sink over recent decades, with a substantial fraction of this sink probably located in the tropics, particularly in the Amazon. Nevertheless, it is unclear how the terrestrial carbon sink will evolve as climate and atmospheric composition continue to change. Here we analyse the historical evolution of the biomass dynamics of the Amazon rainforest over three decades using a distributed network of 321 plots. While this analysis confirms that Amazon forests have acted as a long-term net biomass sink, we find a long-term decreasing trend of carbon accumulation. Rates of net increase in above-ground biomass declined by one-third during the past decade compared to the 1990s. This is a consequence of growth rate increases levelling off recently, while biomass mortality persistently increased throughout, leading to a shortening of carbon residence times. Potential drivers for the mortality increase include greater climate variability, and feedbacks of faster growth on mortality, resulting in shortened tree longevity. The observed decline of the Amazon sink diverges markedly from the recent increase in terrestrial carbon uptake at the global scale, and is contrary to expectations based on models.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brienen, R J W -- Phillips, O L -- Feldpausch, T R -- Gloor, E -- Baker, T R -- Lloyd, J -- Lopez-Gonzalez, G -- Monteagudo-Mendoza, A -- Malhi, Y -- Lewis, S L -- Vasquez Martinez, R -- Alexiades, M -- Alvarez Davila, E -- Alvarez-Loayza, P -- Andrade, A -- Aragao, L E O C -- Araujo-Murakami, A -- Arets, E J M M -- Arroyo, L -- Aymard C, G A -- Banki, O S -- Baraloto, C -- Barroso, J -- Bonal, D -- Boot, R G A -- Camargo, J L C -- Castilho, C V -- Chama, V -- Chao, K J -- Chave, J -- Comiskey, J A -- Cornejo Valverde, F -- da Costa, L -- de Oliveira, E A -- Di Fiore, A -- Erwin, T L -- Fauset, S -- Forsthofer, M -- Galbraith, D R -- Grahame, E S -- Groot, N -- Herault, B -- Higuchi, N -- Honorio Coronado, E N -- Keeling, H -- Killeen, T J -- Laurance, W F -- Laurance, S -- Licona, J -- Magnussen, W E -- Marimon, B S -- Marimon-Junior, B H -- Mendoza, C -- Neill, D A -- Nogueira, E M -- Nunez, P -- Pallqui Camacho, N C -- Parada, A -- Pardo-Molina, G -- Peacock, J -- Pena-Claros, M -- Pickavance, G C -- Pitman, N C A -- Poorter, L -- Prieto, A -- Quesada, C A -- Ramirez, F -- Ramirez-Angulo, H -- Restrepo, Z -- Roopsind, A -- Rudas, A -- Salomao, R P -- Schwarz, M -- Silva, N -- Silva-Espejo, J E -- Silveira, M -- Stropp, J -- Talbot, J -- ter Steege, H -- Teran-Aguilar, J -- Terborgh, J -- Thomas-Caesar, R -- Toledo, M -- Torello-Raventos, M -- Umetsu, R K -- van der Heijden, G M F -- van der Hout, P -- Guimaraes Vieira, I C -- Vieira, S A -- Vilanova, E -- Vos, V A -- Zagt, R J -- England -- Nature. 2015 Mar 19;519(7543):344-8. doi: 10.1038/nature14283.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Geography, University of Leeds, Leeds LS2 9JT, UK. ; 1] School of Geography, University of Leeds, Leeds LS2 9JT, UK. [2] Geography, College of Life and Environmental Sciences, University of Exeter, Rennes Drive, Exeter EX4 4RJ, UK. ; 1] Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire SL5 7PY, UK. [2] School of Marine and Tropical Biology, James Cook University, Cairns, 4870 Queenland, Australia. ; Jardin Botanico de Missouri, Prolongacion Bolognesi Mz.e, Lote 6, Oxapampa, Pasco, Peru. ; Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford OX1 3QK, UK. ; 1] School of Geography, University of Leeds, Leeds LS2 9JT, UK. [2] Department of Geography, University College London, Pearson Building, Gower Street, London WC1E 6BT, UK. ; School of Anthropology and Conservation, Marlowe Building, University of Kent, Canterbury CT1 3EH, UK. ; Servicios Ecosistemicos y Cambio Climatico, Jardin Botanico de Medellin, Calle 73 no. 51 D-14, C.P. 050010, Medellin, Colombia. ; Center for Tropical Conservation, Duke University, Box 90381, Durham, North Carolina 27708, USA. ; Biological Dynamics of Forest Fragment Project (INPA &STRI), C.P. 478, Manaus AM 69011-970, Brazil. ; 1] Geography, College of Life and Environmental Sciences, University of Exeter, Rennes Drive, Exeter EX4 4RJ, UK. [2] National Institute for Space Research (INPE), Av. Dos Astronautas, 1758, Sao Jose dos Campos, Sao Paulo 12227-010, Brazil. ; Museo de Historia Natural Noel Kempff Mercado, Universidad Autonoma Gabriel Rene Moreno, Casilla 2489, Av. Irala 565, Santa Cruz, Bolivia. ; Alterra, Wageningen University and Research Centre, PO Box 47, 6700 AA Wageningen, The Netherlands. ; UNELLEZ-Guanare, Programa de Ciencias del Agro y el Mar, Herbario Universitario (PORT), Mesa de Cavacas, Estado Portuguesa, 3350 Venezuela. ; Biodiversiteit en Ecosysteem Dynamica, University of Amsterdam, Postbus 94248, 1090 GE Amsterdam, The Netherlands. ; 1] Institut National de la Recherche Agronomique, UMR EcoFoG, Campus Agronomique, 97310 Kourou, French Guiana. [2] International Center for Tropical Botany, Department of Biological Sciences, Florida International University, Miami, Florida 33199, USA. ; Universidade Federal do Acre, Campus de Cruzeiro do Sul, Rio Branco, Brazil. ; INRA, UMR 1137 ''Ecologie et Ecophysiologie Forestiere'' 54280 Champenoux, France. ; Embrapa Roraima, Caixa Postal 133, Boa Vista, RR, CEP 69301-970, Brazil. ; Universidad Nacional San Antonio Abad del Cusco, Av. de la Cultura N degrees 733, Cusco, Peru. ; 1] School of Geography, University of Leeds, Leeds LS2 9JT, UK. [2] International Master Program of Agriculture, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 40227, Taiwan. ; Universite Paul Sabatier CNRS, UMR 5174 Evolution et Diversite Biologique, Batiment 4R1, 31062 Toulouse, France. ; Northeast Region Inventory and Monitoring Program, National Park Service, 120 Chatham Lane, Fredericksburg, Virginia 22405, USA. ; Andes to Amazon Biodiversity Program, Puerto Maldonado, Madre de Dios, Peru. ; Universidade Federal do Para, Centro de Geociencias, Belem, CEP 66017-970 Para, Brazil. ; Universidade do Estado de Mato Grosso, Campus de Nova Xavantina, Caixa Postal 08, CEP 78.690-000, Nova Xavantina MT, Brazil. ; Department of Anthropology, University of Texas at Austin, SAC Room 5.150, 2201 Speedway Stop C3200, Austin, Texas 78712, USA. ; Department of Entomology, Smithsonian Institution, PO Box 37012, MRC 187, Washington DC 20013-7012, USA. ; Cirad, UMR Ecologie des Forets de Guyane, Campus Agronomique, 97310 Kourou, French Guiana. ; 1] School of Geography, University of Leeds, Leeds LS2 9JT, UK. [2] Instituto de Investigaciones de la Amazonia Peruana, Av. A. Jose Quinones km 2.5, Iquitos, Peru. ; World Wildlife Fund, 1250 24th Street NW, Washington DC 20037, USA. ; Centre for Tropical Environmental and Sustainability Science (TESS) and School of Marine and Environmental Sciences, James Cook University, Cairns, Queensland 4878, Australia. ; Instituto Boliviano de Investigacion Forestal, C.P. 6201, Santa Cruz de la Sierra, Bolivia. ; National Institute for Research in Amazonia (INPA), C.P. 478, Manaus, Amazonas, CEP 69011-970, Brazil. ; 1] FOMABO, Manejo Forestal en las Tierras Tropicales de Bolivia, Sacta, Bolivia. [2] Escuela de Ciencias Forestales (ESFOR), Universidad Mayor de San Simon (UMSS), Sacta, Bolivia. ; Universidad Estatal Amazonica, Facultad de Ingenieria Ambiental, Paso lateral km 2 1/2 via Napo, Puyo, Pastaza, Ecuador. ; National Institute for Research in Amazonia (INPA), C.P. 2223, 69080-971, Manaus, Amazonas, Brazil. ; Universidad Autonoma del Beni, Campus Universitario, Av. Ejercito Nacional, Riberalta, Beni, Bolivia. ; 1] Instituto Boliviano de Investigacion Forestal, C.P. 6201, Santa Cruz de la Sierra, Bolivia. [2] Forest Ecology and Forest Management Group, Wageningen University, PO Box 47, 6700 AA Wageningen, The Netherlands. ; 1] Center for Tropical Conservation, Duke University, Box 90381, Durham, North Carolina 27708, USA. [2] The Field Museum, 1400 South Lake Shore Drive, Chicago, Illinois 60605-2496, USA. ; Forest Ecology and Forest Management Group, Wageningen University, PO Box 47, 6700 AA Wageningen, The Netherlands. ; Universidad Nacional de la Amazonia Peruana, Iquitos, Loreto, Peru. ; Instituto de Investigaciones para el Desarrollo Forestal (INDEFOR), Universidad de Los Andes, Facultad de Ciencias Forestales y Ambientales, Conjunto Forestal, C.P. 5101, Merida, Venezuela. ; Iwokrama International Centre for Rainforest Conservation and Development, 77 High Street Kingston, Georgetown, Guyana. ; Museu Paraense Emilio Goeldi, Av. Magalhaes Barata, 376 - Sao Braz, CEP 66040-170, Belem PA, Brazil. ; UFRA, Av. Presidente Tancredo Neves 2501, CEP 66.077-901, Belem, Para, Brazil. ; Museu Universitario, Universidade Federal do Acre, Rio Branco AC 69910-900, Brazil. ; European Commission - DG Joint Research Centre, Institute for Environment and Sustainability, Via Enrico Fermi 274, 21010 Ispra, Italy. ; 1] Naturalis Biodiversity Center, PO Box, 2300 RA, Leiden, The Netherlands. [2] Ecology and Biodiversity Group, Utrecht University, PO Box 80084, 3508 TB Utrecht, The Netherlands. ; Museo de Historia Natural Alcide D'Orbigny, Av. Potosi no 1458, Cochabamba, Bolivia. ; 1] School of Earth and Environmental Science, James Cook University, Cairns, Queensland 4870, Australia. [2] Centre for Tropical Environmental and Sustainability Science (TESS) and School of Marine and Tropical Biology, James Cook University, Cairns, Queensland 4878, Australia. ; 1] Northumbria University, School of Geography, Ellison Place, Newcastle upon Tyne, Newcastle NE1 8ST, UK. [2] University of Wisconsin, Milwaukee, Wisconsin 53202, USA. [3] Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panama, Republic of Panama. ; Van der Hout Forestry Consulting, Jan Trooststraat 6, 3078 HP Rotterdam, The Netherlands. ; Universidade Estadual de Campinas, NEPAM, Rua dos Flamboyants, 155- Cidade Universitaria Zeferino Vaz, Campinas, CEP 13083-867, Sao Paulo, Brazil. ; 1] Universidad Autonoma del Beni, Campus Universitario, Av. Ejercito Nacional, Riberalta, Beni, Bolivia. [2] Centro de Investigacion y Promocion del Campesinado, regional Norte Amazonico, C/ Nicanor Gonzalo Salvatierra N degrees 362, Casilla 16, Riberalta, Bolivia. ; Tropenbos International, PO Box 232, 6700 AE Wageningen, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25788097" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere/chemistry ; Biomass ; Brazil ; Carbon/analysis/metabolism ; Carbon Dioxide/*analysis/metabolism ; *Carbon Sequestration ; Plant Stems/metabolism ; *Rainforest ; Trees/growth & development/metabolism ; Tropical Climate ; Wood/analysis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
  • 6
    Publication Date: 2011-01-19
    Description: The crucial role of biodiversity in the links between ecosystems and societies has been repeatedly highlighted both as source of wellbeing and as a target of human actions, but not all aspects of biodiversity are equally important to different ecosystem services. Similarly, different social actors have different perceptions of and access to ecosystem services, and therefore, they have different wants and capacities to select directly or indirectly for particular biodiversity and ecosystem characteristics. Their choices feed back onto the ecosystem services provided to all parties involved and in turn, affect future decisions. Despite this recognition, the research communities addressing biodiversity, ecosystem services, and human outcomes have yet to develop frameworks that adequately treat the multiple dimensions and interactions in the relationship. Here, we present an interdisciplinary framework for the analysis of relationships between functional diversity, ecosystem services, and human actions that is applicable to specific social environmental systems at local scales. We connect the mechanistic understanding of the ecological role of diversity with its social relevance: ecosystem services. The framework permits connections between functional diversity components and priorities of social actors using land use decisions and ecosystem services as the main links between these ecological and social components. We propose a matrix-based method that provides a transparent and flexible platform for quantifying and integrating social and ecological information and negotiating potentially conflicting land uses among multiple social actors. We illustrate the applicability of our framework by way of land use examples from temperate to subtropical South America, an area of rapid social and ecological change.
    Keywords: Inaugural Articles, Sustainability Science
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-05-15
    Description: Regrowth of tropical secondary forests following complete or nearly complete removal of forest vegetation actively stores carbon in aboveground biomass, partially counterbalancing carbon emissions from deforestation, forest degradation, burning of fossil fuels, and other anthropogenic sources. We estimate the age and spatial extent of lowland second-growth forests in the Latin American tropics and model their potential aboveground carbon accumulation over four decades. Our model shows that, in 2008, second-growth forests (1 to 60 years old) covered 2.4 million km 2 of land (28.1% of the total study area). Over 40 years, these lands can potentially accumulate a total aboveground carbon stock of 8.48 Pg C (petagrams of carbon) in aboveground biomass via low-cost natural regeneration or assisted regeneration, corresponding to a total CO 2 sequestration of 31.09 Pg CO 2 . This total is equivalent to carbon emissions from fossil fuel use and industrial processes in all of Latin America and the Caribbean from 1993 to 2014. Ten countries account for 95% of this carbon storage potential, led by Brazil, Colombia, Mexico, and Venezuela. We model future land-use scenarios to guide national carbon mitigation policies. Permitting natural regeneration on 40% of lowland pastures potentially stores an additional 2.0 Pg C over 40 years. Our study provides information and maps to guide national-level forest-based carbon mitigation plans on the basis of estimated rates of natural regeneration and pasture abandonment. Coupled with avoided deforestation and sustainable forest management, natural regeneration of second-growth forests provides a low-cost mechanism that yields a high carbon sequestration potential with multiple benefits for biodiversity and ecosystem services.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-10-20
    Description: McMichael et al . state that we overlooked the effects of post-Columbian human activities in shaping current floristic patterns in Amazonian forests. We formally show that post-Columbian human influences on Amazonian forests are indeed important, but they have played a smaller role when compared to the persistent effects of pre-Columbian human activities on current forest composition.
    Keywords: Ecology, Online Only
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2009-09-01
    Print ISSN: 0378-1127
    Electronic ISSN: 1872-7042
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2008-09-01
    Print ISSN: 0378-1127
    Electronic ISSN: 1872-7042
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...