ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: Executive Summary Return of samples from the surface of Mars has been a goal of the international Mars science community for many years. Affirmation by NASA and ESA of the importance of Mars exploration led the agencies to establish the international MSR Objectives and Samples Team (iMOST). The purpose of the team is to re‐evaluate and update the sample‐related science and engineering objectives of a Mars Sample Return (MSR) campaign. The iMOST team has also undertaken to define the measurements and the types of samples that can best address the objectives. Seven objectives have been defined for MSR, traceable through two decades of previously published international priorities. The first two objectives are further divided into sub‐objectives. Within the main part of the report, the importance to science and/or engineering of each objective is described, critical measurements that would address the objectives are specified, and the kinds of samples that would be most likely to carry key information are identified. These seven objectives provide a framework for demonstrating how the first set of returned Martian samples would impact future Martian science and exploration. They also have implications for how analogous investigations might be conducted for samples returned by future missions from other solar system bodies, especially those that may harbor biologically relevant or sensitive material, such as Ocean Worlds (Europa, Enceladus, Titan) and others. Summary of Objectives and Sub‐Objectives for MSR Identified by iMOST Objective 1 Interpret the primary geologic processes and history that formed the Martian geologic record, with an emphasis on the role of water. Intent To investigate the geologic environment(s) represented at the Mars 2020 landing site, provide definitive geologic context for collected samples, and detail any characteristics that might relate to past biologic processesThis objective is divided into five sub‐objectives that would apply at different landing sites. 1.1 Characterize the essential stratigraphic, sedimentologic, and facies variations of a sequence of Martian sedimentary rocks. Intent To understand the preserved Martian sedimentary record. Samples A suite of sedimentary rocks that span the range of variation. Importance Basic inputs into the history of water, climate change, and the possibility of life 1.2 Understand an ancient Martian hydrothermal system through study of its mineralization products and morphological expression. Intent To evaluate at least one potentially life‐bearing “habitable” environment Samples A suite of rocks formed and/or altered by hydrothermal fluids. Importance Identification of a potentially habitable geochemical environment with high preservation potential. 1.3 Understand the rocks and minerals representative of a deep subsurface groundwater environment. Intent To evaluate definitively the role of water in the subsurface. Samples Suites of rocks/veins representing water/rock interaction in the subsurface. Importance May constitute the longest‐lived habitable environments and a key to the hydrologic cycle. 1.4 Understand water/rock/atmosphere interactions at the Martian surface and how they have changed with time. Intent To constrain time‐variable factors necessary to preserve records of microbial life. Samples Regolith, paleosols, and evaporites. Importance Subaerial near‐surface processes could support and preserve microbial life. 1.5 Determine the petrogenesis of Martian igneous rocks in time and space. Intent To provide definitive characterization of igneous rocks on Mars. Samples Diverse suites of ancient igneous rocks. Importance Thermochemical record of the planet and nature of the interior. Objective 2 Assess and interpret the potential biological history of Mars, including assaying returned samples for the evidence of life. Intent To investigate the nature and extent of Martian habitability, the conditions and processes that supported or challenged life, how different environments might have influenced the preservation of biosignatures and created nonbiological “mimics,” and to look for biosignatures of past or present life.This objective has three sub‐objectives: 2.1 Assess and characterize carbon, including possible organic and pre‐biotic chemistry. Samples All samples collected as part of Objective 1. Importance Any biologic molecular scaffolding on Mars would likely be carbon‐based. 2.2 Assay for the presence of biosignatures of past life at sites that hosted habitable environments and could have preserved any biosignatures. Samples All samples collected as part of Objective 1. Importance Provides the means of discovering ancient life. 2.3 Assess the possibility that any life forms detected are alive, or were recently alive. Samples All samples collected as part of Objective 1. Importance Planetary protection, and arguably the most important scientific discovery possible. Objective 3 Quantitatively determine the evolutionary timeline of Mars. Intent To provide a radioisotope‐based time scale for major events, including magmatic, tectonic, fluvial, and impact events, and the formation of major sedimentary deposits and geomorphological features. Samples Ancient igneous rocks that bound critical stratigraphic intervals or correlate with crater‐dated surfaces. Importance Quantification of Martian geologic history. Objective 4 Constrain the inventory of Martian volatiles as a function of geologic time and determine the ways in which these volatiles have interacted with Mars as a geologic system. Intent To recognize and quantify the major roles that volatiles (in the atmosphere and in the hydrosphere) play in Martian geologic and possibly biologic evolution. Samples Current atmospheric gas, ancient atmospheric gas trapped in older rocks, and minerals that equilibrated with the ancient atmosphere. Importance Key to understanding climate and environmental evolution. Objective 5 Reconstruct the processes that have affected the origin and modification of the interior, including the crust, mantle, core and the evolution of the Martian dynamo. Intent To quantify processes that have shaped the planet's crust and underlying structure, including planetary differentiation, core segregation and state of the magnetic dynamo, and cratering. Samples Igneous, potentially magnetized rocks (both igneous and sedimentary) and impact‐generated samples. Importance Elucidate fundamental processes for comparative planetology. Objective 6 Understand and quantify the potential Martian environmental hazards to future human exploration and the terrestrial biosphere. Intent To define and mitigate an array of health risks related to the Martian environment associated with the potential future human exploration of Mars. Samples Fine‐grained dust and regolith samples. Importance Key input to planetary protection planning and astronaut health. Objective 7 Evaluate the type and distribution of in‐situ resources to support potential future Mars exploration. Intent To quantify the potential for obtaining Martian resources, including use of Martian materials as a source of water for human consumption, fuel production, building fabrication, and agriculture. Samples Regolith. Importance Production of simulants that will facilitate long‐term human presence on Mars. Summary of iMOST Findings Several specific findings were identified during the iMOST study. While they are not explicit recommendations, we suggest that they should serve as guidelines for future decision making regarding planning of potential future MSR missions. The samples to be collected by the Mars 2020 (M‐2020) rover will be of sufficient size and quality to address and solve a wide variety of scientific questions. Samples, by definition, are a statistical representation of a larger entity. Our ability to interpret the source geologic units and processes by studying sample sub sets is highly dependent on the quality of the sample context. In the case of the M‐2020 samples, the context is expected to be excellent, and at multiple scales. (A) Regional and planetary context will be established by the on‐going work of the multi‐agency fleet of Mars orbiters. (B) Local context will be established at field area‐ to outcrop‐ to hand sample‐ to hand lens scale using the instruments carried by M‐2020. A significant fraction of the value of the MSR sample collection would come from its organization into sample suites, which are small groupings of samples designed to represent key aspects of geologic or geochemical variation. If the Mars 2020 rover acquires a scientifically well‐chosen set of samples, with sufficient geological diversity, and if those samples were returned to Earth, then major progress can be expected on all seven of the objectives proposed in this study, regardless of the final choice of landing site. The specifics of which parts of Objective 1 could be achieved would be different at each of the final three candidate landing sites, but some combination of critically important progress could be made at any of them. An aspect of the search for evidence of life is that we do not know in advance how evidence for Martian life would be preserved in the geologic record.  In order for the returned samples to be most useful for both understanding geologic processes (Objective 1) and the search for life (Objective 2), the sample collection should contain BOTH typical and unusual samples from the rock units explored.  This consideration should be incorporated into sample selection and the design of the suites.  The retrieval missions of a MSR campaign should (1) minimize stray magnetic fields to which the samples would be exposed and carry a magnetic witness plate to record exposure, (2) collect and return atmospheric gas sample(s), and (3) collect additional dust and/or regolith sample mass if possible.
    Print ISSN: 1086-9379
    Electronic ISSN: 1945-5100
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: Abstract Executive summary provided in lieu of abstract.
    Print ISSN: 1086-9379
    Electronic ISSN: 1945-5100
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-04-02
    Description: Maternal age is a risk factor for congenital heart disease even in the absence of any chromosomal abnormality in the newborn. Whether the basis of this risk resides with the mother or oocyte is unknown. The impact of maternal age on congenital heart disease can be modelled in mouse pups that harbour a mutation of the cardiac transcription factor gene Nkx2-5 (ref. 8). Here, reciprocal ovarian transplants between young and old mothers establish a maternal basis for the age-associated risk in mice. A high-fat diet does not accelerate the effect of maternal ageing, so hyperglycaemia and obesity do not simply explain the mechanism. The age-associated risk varies with the mother's strain background, making it a quantitative genetic trait. Most remarkably, voluntary exercise, whether begun by mothers at a young age or later in life, can mitigate the risk when they are older. Thus, even when the offspring carry a causal mutation, an intervention aimed at the mother can meaningfully reduce their risk of congenital heart disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4393370/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4393370/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schulkey, Claire E -- Regmi, Suk D -- Magnan, Rachel A -- Danzo, Megan T -- Luther, Herman -- Hutchinson, Alayna K -- Panzer, Adam A -- Grady, Mary M -- Wilson, David B -- Jay, Patrick Y -- P30 DK020579/DK/NIDDK NIH HHS/ -- P30 DK052574/DK/NIDDK NIH HHS/ -- P30 DK52574/DK/NIDDK NIH HHS/ -- R01 HL105857/HL/NHLBI NIH HHS/ -- T32 HL007873/HL/NHLBI NIH HHS/ -- T32HL007873/HL/NHLBI NIH HHS/ -- England -- Nature. 2015 Apr 9;520(7546):230-3. doi: 10.1038/nature14361. Epub 2015 Apr 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri 63110 USA. ; 1] Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri 63110 USA. [2] Department of Developmental Biology, Washington University School of Medicine, St Louis, Missouri 63110 USA. ; 1] Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri 63110 USA. [2] Department of Genetics, Washington University School of Medicine, St Louis, Missouri 63110 USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25830876" target="_blank"〉PubMed〈/a〉
    Keywords: Age of Onset ; Aging/genetics/*physiology ; Animals ; Animals, Newborn ; Diet, High-Fat ; Female ; Genetic Predisposition to Disease ; Heart/physiology/physiopathology ; Heart Diseases/*congenital/etiology/genetics/*prevention & control ; Homeodomain Proteins/genetics ; Hyperglycemia ; *Maternal Age ; Mice ; Obesity ; Ovary/transplantation ; Phenotype ; Physical Conditioning, Animal/*physiology ; Pregnancy ; Pregnancy, Animal/genetics/*physiology ; Quantitative Trait Loci/genetics ; Risk ; Transcription Factors/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018
    Description: Abstract Jbilet Winselwan is one of the largest CM carbonaceous chondrites available for study. Its light, major, and trace elemental compositions are within the range of other CM chondrites. Chondrules are surrounded by dusty rims and set within a matrix of phyllosilicates, oxides, and sulfides. Calcium‐ and aluminum‐rich inclusions (CAIs) are present at ≤1 vol% and at least one contains melilite. Jbilet Winselwan is a breccia containing diverse lithologies that experienced varying degrees of aqueous alteration. In most lithologies, the chondrules and CAIs are partially altered and the metal abundance is low (〈1 vol%), consistent with petrologic subtypes 2.7–2.4 on the Rubin et al. () scale. However, chondrules and CAIs in some lithologies are completely altered suggesting more extensive hydration to petrologic subtypes ≤2.3. Following hydration, some lithologies suffered thermal metamorphism at 400–500 °C. Bulk X‐ray diffraction shows that Jbilet Winselwan consists of a highly disordered and/or very fine‐grained phase (73 vol%), which we infer was originally phyllosilicates prior to dehydration during a thermal metamorphic event(s). Some aliquots of Jbilet Winselwan also show significant depletions in volatile elements such as He and Cd. The heating was probably short‐lived and caused by impacts. Jbilet Winselwan samples a mixture of hydrated and dehydrated materials from a primitive water‐rich asteroid. It may therefore be a good analog for the types of materials that will be encountered by the Hayabusa‐2 and OSIRIS‐REx asteroid sample‐return missions.
    Print ISSN: 1086-9379
    Electronic ISSN: 1945-5100
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2006-12-16
    Description: The Stardust spacecraft collected thousands of particles from comet 81P/Wild 2 and returned them to Earth for laboratory study. The preliminary examination of these samples shows that the nonvolatile portion of the comet is an unequilibrated assortment of materials that have both presolar and solar system origin. The comet contains an abundance of silicate grains that are much larger than predictions of interstellar grain models, and many of these are high-temperature minerals that appear to have formed in the inner regions of the solar nebula. Their presence in a comet proves that the formation of the solar system included mixing on the grandest scales.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brownlee, Don -- Tsou, Peter -- Aleon, Jerome -- Alexander, Conel M O'd -- Araki, Tohru -- Bajt, Sasa -- Baratta, Giuseppe A -- Bastien, Ron -- Bland, Phil -- Bleuet, Pierre -- Borg, Janet -- Bradley, John P -- Brearley, Adrian -- Brenker, F -- Brennan, Sean -- Bridges, John C -- Browning, Nigel D -- Brucato, John R -- Bullock, E -- Burchell, Mark J -- Busemann, Henner -- Butterworth, Anna -- Chaussidon, Marc -- Cheuvront, Allan -- Chi, Miaofang -- Cintala, Mark J -- Clark, B C -- Clemett, Simon J -- Cody, George -- Colangeli, Luigi -- Cooper, George -- Cordier, Patrick -- Daghlian, C -- Dai, Zurong -- D'Hendecourt, Louis -- Djouadi, Zahia -- Dominguez, Gerardo -- Duxbury, Tom -- Dworkin, Jason P -- Ebel, Denton S -- Economou, Thanasis E -- Fakra, Sirine -- Fairey, Sam A J -- Fallon, Stewart -- Ferrini, Gianluca -- Ferroir, T -- Fleckenstein, Holger -- Floss, Christine -- Flynn, George -- Franchi, Ian A -- Fries, Marc -- Gainsforth, Z -- Gallien, J-P -- Genge, Matt -- Gilles, Mary K -- Gillet, Philipe -- Gilmour, Jamie -- Glavin, Daniel P -- Gounelle, Matthieu -- Grady, Monica M -- Graham, Giles A -- Grant, P G -- Green, Simon F -- Grossemy, Faustine -- Grossman, Lawrence -- Grossman, Jeffrey N -- Guan, Yunbin -- Hagiya, Kenji -- Harvey, Ralph -- Heck, Philipp -- Herzog, Gregory F -- Hoppe, Peter -- Horz, Friedrich -- Huth, Joachim -- Hutcheon, Ian D -- Ignatyev, Konstantin -- Ishii, Hope -- Ito, Motoo -- Jacob, Damien -- Jacobsen, Chris -- Jacobsen, Stein -- Jones, Steven -- Joswiak, David -- Jurewicz, Amy -- Kearsley, Anton T -- Keller, Lindsay P -- Khodja, H -- Kilcoyne, A L David -- Kissel, Jochen -- Krot, Alexander -- Langenhorst, Falko -- Lanzirotti, Antonio -- Le, Loan -- Leshin, Laurie A -- Leitner, J -- Lemelle, L -- Leroux, Hugues -- Liu, Ming-Chang -- Luening, K -- Lyon, Ian -- Macpherson, Glen -- Marcus, Matthew A -- Marhas, Kuljeet -- Marty, Bernard -- Matrajt, Graciela -- McKeegan, Kevin -- Meibom, Anders -- Mennella, Vito -- Messenger, Keiko -- Messenger, Scott -- Mikouchi, Takashi -- Mostefaoui, Smail -- Nakamura, Tomoki -- Nakano, T -- Newville, M -- Nittler, Larry R -- Ohnishi, Ichiro -- Ohsumi, Kazumasa -- Okudaira, Kyoko -- Papanastassiou, Dimitri A -- Palma, Russ -- Palumbo, Maria E -- Pepin, Robert O -- Perkins, David -- Perronnet, Murielle -- Pianetta, P -- Rao, William -- Rietmeijer, Frans J M -- Robert, Francois -- Rost, D -- Rotundi, Alessandra -- Ryan, Robert -- Sandford, Scott A -- Schwandt, Craig S -- See, Thomas H -- Schlutter, Dennis -- Sheffield-Parker, J -- Simionovici, Alexandre -- Simon, Steven -- Sitnitsky, I -- Snead, Christopher J -- Spencer, Maegan K -- Stadermann, Frank J -- Steele, Andrew -- Stephan, Thomas -- Stroud, Rhonda -- Susini, Jean -- Sutton, S R -- Suzuki, Y -- Taheri, Mitra -- Taylor, Susan -- Teslich, Nick -- Tomeoka, Kazu -- Tomioka, Naotaka -- Toppani, Alice -- Trigo-Rodriguez, Josep M -- Troadec, David -- Tsuchiyama, Akira -- Tuzzolino, Anthony J -- Tyliszczak, Tolek -- Uesugi, K -- Velbel, Michael -- Vellenga, Joe -- Vicenzi, E -- Vincze, L -- Warren, Jack -- Weber, Iris -- Weisberg, Mike -- Westphal, Andrew J -- Wirick, Sue -- Wooden, Diane -- Wopenka, Brigitte -- Wozniakiewicz, Penelope -- Wright, Ian -- Yabuta, Hikaru -- Yano, Hajime -- Young, Edward D -- Zare, Richard N -- Zega, Thomas -- Ziegler, Karen -- Zimmerman, Laurent -- Zinner, Ernst -- Zolensky, Michael -- New York, N.Y. -- Science. 2006 Dec 15;314(5806):1711-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Astronomy, University of Washington, Seattle, WA 98195, USA. brownlee@astro.washington.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17170289" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-10-16
    Description: Tissint (Morocco) is the fifth martian meteorite collected after it was witnessed falling to Earth. Our integrated mineralogical, petrological, and geochemical study shows that it is a depleted picritic shergottite similar to EETA79001A. Highly magnesian olivine and abundant glass containing martian atmosphere are present in Tissint. Refractory trace element, sulfur, and fluorine data for the matrix and glass veins in the meteorite indicate the presence of a martian surface component. Thus, the influence of in situ martian weathering can be unambiguously distinguished from terrestrial contamination in this meteorite. Martian weathering features in Tissint are compatible with the results of spacecraft observations of Mars. Tissint has a cosmic-ray exposure age of 0.7 +/- 0.3 million years, consistent with those of many other shergottites, notably EETA79001, suggesting that they were ejected from Mars during the same event.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aoudjehane, H Chennaoui -- Avice, G -- Barrat, J-A -- Boudouma, O -- Chen, G -- Duke, M J M -- Franchi, I A -- Gattacceca, J -- Grady, M M -- Greenwood, R C -- Herd, C D K -- Hewins, R -- Jambon, A -- Marty, B -- Rochette, P -- Smith, C L -- Sautter, V -- Verchovsky, A -- Weber, P -- Zanda, B -- New York, N.Y. -- Science. 2012 Nov 9;338(6108):785-8. doi: 10.1126/science.1224514. Epub 2012 Oct 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Hassan II University Casablanca, Faculty of Sciences, Geosciences Appliquees a l'Ingenierie et l'Amenagement (GAIA) Laboratory, BP 5366 Maarif, Casablanca, Morocco. chennaoui_h@yahoo.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23065902" target="_blank"〉PubMed〈/a〉
    Keywords: Carbon Isotopes/analysis ; Iron Compounds/analysis ; Magnesium Compounds/analysis ; *Mars ; *Meteoroids ; Nitrogen Isotopes/analysis ; Oxygen Isotopes/analysis ; Silicates/analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2006-12-16
    Description: Infrared spectra of material captured from comet 81P/Wild 2 by the Stardust spacecraft reveal indigenous aliphatic hydrocarbons similar to those in interplanetary dust particles thought to be derived from comets, but with longer chain lengths than those observed in the diffuse interstellar medium. Similarly, the Stardust samples contain abundant amorphous silicates in addition to crystalline silicates such as olivine and pyroxene. The presence of crystalline silicates in Wild 2 is consistent with mixing of solar system and interstellar matter. No hydrous silicates or carbonate minerals were detected, which suggests a lack of aqueous processing of Wild 2 dust.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Keller, Lindsay P -- Bajt, Sasa -- Baratta, Giuseppe A -- Borg, Janet -- Bradley, John P -- Brownlee, Don E -- Busemann, Henner -- Brucato, John R -- Burchell, Mark -- Colangeli, Luigi -- d'Hendecourt, Louis -- Djouadi, Zahia -- Ferrini, Gianluca -- Flynn, George -- Franchi, Ian A -- Fries, Marc -- Grady, Monica M -- Graham, Giles A -- Grossemy, Faustine -- Kearsley, Anton -- Matrajt, Graciela -- Nakamura-Messenger, Keiko -- Mennella, Vito -- Nittler, Larry -- Palumbo, Maria E -- Stadermann, Frank J -- Tsou, Peter -- Rotundi, Alessandra -- Sandford, Scott A -- Snead, Christopher -- Steele, Andrew -- Wooden, Diane -- Zolensky, Mike -- New York, N.Y. -- Science. 2006 Dec 15;314(5806):1728-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Astromaterials Research and Exploration Science Directorate, Mail Code KR, NASA-Johnson Space Center, Houston, TX 77058, USA. lindsay.p.keller@nasa.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17170293" target="_blank"〉PubMed〈/a〉
    Keywords: Cosmic Dust/analysis ; Hydrocarbons/*analysis ; *Meteoroids ; Silicates/*analysis ; Spacecraft ; Spectroscopy, Fourier Transform Infrared
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1983-04-22
    Description: The Murchison and Allende chondrites contain up to 5 parts per million carbon that is enriched in carbon-13 by up to + 1100 per mil (the ratio of carbon-12 to carbon-13 is approximately 42, compared to 88 to 93 for terrestrial carbon). This "heavy" carbon is associated with neon-22 and with anomalous krypton and xenon showing the signature of the s-process (neutron capture on a slow time scale). It apparently represents interstellar grains ejected from late-type stars. A second anomalous xenon component ("CCFXe") is associated with a distinctive, light carbon (depleted in carbon-13 by 38 per mil), which, however, falls within the terrestrial range and hence may be of either local or exotic origin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Swart, P K -- Grady, M M -- Pillinger, C T -- Lewis, R S -- Anders, E -- New York, N.Y. -- Science. 1983 Apr 22;220(4595):406-10.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17831412" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...